Construction and characterization of a mercury-independent MerR activator (MerR(AC)): Transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion

J. Parkhill*, A. Z. Ansari, J. G. Wright, N. L. Brown, T. V. O'Halloran

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

The MerR regulatory protein of transposon Tn501 controls the expression of the mercury resistance (mer) genes in response to the concentration of mercuric ions. MerR is unique among prokaryotic regulatory proteins so far described in that it acts as a repressor [-Hg(II)] and an activator [+Hg(II)] of transcription of the mer genes, but binds to a single site on the DNA in both cases. This transcriptional activation process has been postulated to involve a protein-induced conformational change in the DNA that allows RNA polymerase more readily to form an open complex at the promoter. It has been shown that activation of transcription by MerR in the presence of mercury is accompanied by hypersensitivity of the operator to chemical nucleases that are sensitive to local distortion in DNA structure. Here we describe specific mutations in MerR that allow the protein to stimulate transcription in the absence of the allosteric activator -Hg(II). We demonstrate that the degree of activation caused by these mutants directly correlates with the degree of DNA distortion as measured by the hypersensitivity of MerR-DNA complexes to the nuclease Cu-5-phenyl-o-phenanthroline. These results support the model described above.

Original languageEnglish (US)
Pages (from-to)413-421
Number of pages9
JournalEMBO Journal
Volume12
Issue number2
DOIs
StatePublished - 1993

Keywords

  • Allosteric control
  • Constitutive activation
  • Gene regulation
  • Mercury resistance
  • Positive control

ASJC Scopus subject areas

  • Neuroscience(all)
  • Molecular Biology
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Construction and characterization of a mercury-independent MerR activator (MerR(AC)): Transcriptional activation in the absence of Hg(II) is accompanied by DNA distortion'. Together they form a unique fingerprint.

Cite this