Contributions of joint mechanics and neural control to the generation of torque during movement

Daniel Ludvig, Mariah W. Whitmore, Eric J. Perreault

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Completing motor tasks that require contact is dependent on an ability to regulate the relationship between limb motions and interaction forces with the environment. This can be achieved by exploiting the mechanical properties of a limb or through active regulation of joint torques through changes in muscle activation. Leveraging the mechanical properties of a joint might simplify neural control when they are matched to the functional requirements of a task. The purpose of this study was to determine if humans change their control strategy, relying on limb mechanics rather than regulated muscle activation, when feasible. This was accomplished by measuring ankle impedance and muscle activation strategies in three tasks requiring joint torques to: oppose movement, assist movement, or remain constant during movement. We found that subjects produced more torque due to impedance and less torque due to muscle activation in the torque-oppose task, the only task that could feasibly be completed through impedance modulation. These results demonstrate that people do leverage the mechanical properties of a joint to complete certain task, lessening the need for precisely timed muscle contractions.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3807-3810
Number of pages4
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Contributions of joint mechanics and neural control to the generation of torque during movement'. Together they form a unique fingerprint.

Cite this