Abstract
Dynamic Programming (DP) is a principled way to design optimal controllers for certain classes of nonlinear systems; unfortunately, DP is computationally very expensive. The Reinforcement Learning methods known as Adaptive Critics (AC) provide computationally feasible means for performing approximate Dynamic Programming (ADP). The term 'adaptive ' in A C refers to the critic 's improved estimations of the Value Function used by DP. To apply DP, the user must craft a Utility function that embodies all the problem-specific design specifications/criteria. Model Reference Adaptive Control methods have been successfully used in the control community to effect on-line redesign of a controller in response to variations in plant parameters, with the idea that the resulting closed loop system dynamics will mimic those of a Reference Model. The work reported here 1) uses a reference model in ADP as the key information input to the Utility function, and 2) uses ADP off-line to design the desired controller. Future work will extend this to on-line application. This method is demonstrated for a hypersonic shaped airplane called LoFL YTE®; its handling characteristics are natively a little "hotter" than a pilot would desire. A control augmentation subsystem is designed using ADP to make the plane "feel like " a better behaved one, as specified by a Reference Model. The number of inputs to the successfully designed controller are among the largest seen in the literature to date.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the International Joint Conference on Neural Networks |
Pages | 3173-3178 |
Number of pages | 6 |
Volume | 4 |
State | Published - Sep 25 2003 |
Event | International Joint Conference on Neural Networks 2003 - Portland, OR, United States Duration: Jul 20 2003 → Jul 24 2003 |
Other
Other | International Joint Conference on Neural Networks 2003 |
---|---|
Country/Territory | United States |
City | Portland, OR |
Period | 7/20/03 → 7/24/03 |
ASJC Scopus subject areas
- Software
- Artificial Intelligence