Controlling surface interactions with grafted polymers

M. A. Carignano*, I. Szleifer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

The interactions between surfaces modified with grafted polymers is studied theoretically. The aim of this work is to find polymer surface modifications that will result in localized attractive interactions between the surfaces. The practical motivation of the work is to find means to control the distance between bilayers and solid supports in supported membranes. Two theoretical approaches are used, the analytical treatment of Alexander and a molecular theory. It is found that grafting each end of the polymer to each surface results in an interaction with a well defined minimum. The location of the minima is found to be very close to the thickness of the polymer layer when the chains are grafted to only one of the surfaces. The predictions of the analytical theory are in excellent agreement with the molecular approach in this case. It is found that increasing the surface coverage increases the strength of the interaction. However, increasing the polymer chain length at fixed surface coverage results in a decrease of the free energy cost associated with separating the surfaces from their optimal distance. For the cases in which grafting to both surfaces is not possible, the molecular theory is used to study the effect of functionalizing segments of the chain to achieve an attractive well. It is found that by functionalizing the free end-groups of the polymers with segments attracted to the membrane, the range of the attractive interaction is significantly larger than the thickness of the unperturbed layer. Functionalizing the middle segments of the chains results in a shorter range attraction but of the same strength as in the end-functionalized layers. The optimal polymer modification is found to be such that the functionalized groups are attracted to the bare surface but are not attracted to the grafting surface. The relevance of the results to the design of experimental surface modifiers is discussed.

Original languageEnglish (US)
Pages (from-to)187-197
Number of pages11
JournalInterface Science
Volume11
Issue number2
DOIs
StatePublished - Apr 2003

Keywords

  • Grafted polymers
  • Molecular theory
  • Polymer brushes
  • Supported membranes
  • Surface interactions
  • Surface modification

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Controlling surface interactions with grafted polymers'. Together they form a unique fingerprint.

Cite this