Abstract
Stability analysis of decentralized control mechanisms for networked coordinating systems has generally focused on specific controller implementations, such as nearest-neighbor and other types of proximity graph control laws. This approach often misses the need for the addition of other control structures to improve global characteristics of the network. An example of such a situation is the use of a Gabriel graph, which is essentially a nearest-neighbor rule modified to ensure global connectivity of the network if the agents are pairwise connected through their sensor inputs. We present a method of ensuring provable stability of decentralized switching systems by employing a hysteresis rule that uses a zero-sum consensus algorithm. We demonstrate the application of this result to several special cases, including nearest-neighbor control laws, Gabriel graph rules, diffuse target tracking, and hierarchical heterogeneous systems.
Original language | English (US) |
---|---|
Pages (from-to) | 1405-1415 |
Number of pages | 11 |
Journal | IEEE Transactions on Robotics |
Volume | 24 |
Issue number | 6 |
DOIs | |
State | Published - 2008 |
Funding
Dr. Murphey is the recipient of a National Science Foundation CAREER award.
Keywords
- Formation control
- Multirobot control
- Swarm robotics
ASJC Scopus subject areas
- Control and Systems Engineering
- Computer Science Applications
- Electrical and Electronic Engineering