Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State

Patrick R. Stollenwerk, Ivan O. Antonov, Sruthi Venkataramanababu, Yen Wei Lin, Brian C. Odom*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


We demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO+ is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO+ allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation. These features make Si28O+16 a good candidate for future applications such as quantum information processing. Cooling to the ground rotational state is achieved on a 100 ms timescale and attains a population of 94(3)%, with an equivalent temperature T=0.53(6) K. We also describe a novel spectral-filtering approach to cool into arbitrary rotational states and use it to demonstrate a narrow rotational population distribution (N±1) around a selected state.

Original languageEnglish (US)
Article number113201
JournalPhysical review letters
Issue number11
StatePublished - Sep 2020

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Cooling of a Zero-Nuclear-Spin Molecular Ion to a Selected Rotational State'. Together they form a unique fingerprint.

Cite this