Cooperative interactions govern the fermiology of the polar metal Ca3Ru2 O7

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


The antiferromagnetic Ruddlesden-Popper ruthenate Ca3Ru2O7 is a model polar metal, combining inversion symmetry breaking with metallic conductivity; however, its low-temperature (T<48K) crystal structure and Fermi-surface topology remain ambiguous despite numerous measurements and theoretical studies. Here we perform both first-principles calculations with static correlations and angle-resolved photoelectron spectroscopy experiments to construct a complete model of Ca3Ru2O7, reconciling inconsistencies among interpretations of electrical transport, thermopower measurements, and momentum- A nd energy-resolved band dispersions. The solution relies on treating the interplay among Coulomb repulsion, magnetic ordering, spin-orbit interactions, and the RuO6 octahedral degrees of freedom on equal footing. For temperatures 30<T<48K, we propose weak electron-electron interactions produce a symmetry-preserving metal-semimetal transition with Weyl nodes in proximity to the Fermi level, whereas an orthorhombic Pn21a structure emerges for T<30K, exhibiting charge- A nd spin-density waves from enhanced Coulombic interactions.

Original languageEnglish (US)
Article number023141
JournalPhysical Review Research
Issue number2
StatePublished - May 2020

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Cooperative interactions govern the fermiology of the polar metal Ca3Ru2 O7'. Together they form a unique fingerprint.

Cite this