Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity

S. Wilkinson, Y. Hou, J. T. Zoine, J. Saltz, C. Zhang, Z. Chen, Lee Alex Donald Cooper, A. I. Marcus*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Cell motility requires the precise coordination of cell polarization, lamellipodia formation, adhesion, and force generation. LKB1 is a multi-functional serine/threonine kinase that associates with actin at the cellular leading edge of motile cells and suppresses FAK. We sought to understand how LKB1 coordinates these multiple events by systematically dissecting LKB1 protein domain function in combination with live cell imaging and computational approaches. We show that LKB1-Actin colocalization is dependent upon LKB1 farnesylation leading to RhoA-ROCK-mediated stress fiber formation, but membrane dynamics is reliant on LKB1 kinase activity. We propose that LKB1 kinase activity controls membrane dynamics through FAK since loss of LKB1 kinase activity results in morphologically defective nascent adhesion sites. In contrast, defective farnesylation mislocalizes nascent adhesion sites, suggesting that LKB1 farnesylation serves as a targeting mechanism for properly localizing adhesion sites during cell motility. Together, we propose a model where coordination of LKB1 farnesylation and kinase activity serve as a multi-step mechanism to coordinate cell motility during migration.

Original languageEnglish (US)
Article number40929
JournalScientific reports
Volume7
DOIs
StatePublished - Jan 19 2017

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Coordinated cell motility is regulated by a combination of LKB1 farnesylation and kinase activity'. Together they form a unique fingerprint.

Cite this