Cortical and reticular contributions to human precision and power grip

Toshiki Tazoe, Monica A Perez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Key points: The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. Abstract: It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal motoneurons controlling hand muscles. An acoustic startle cue, which engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks and this positively correlated with changes in intracortical inhibition. A startle cue decreased intracortical inhibition, but not CMEPs, during power grip. F-waves remained unchanged across conditions. Our novel findings show that changes in corticospinal excitability present during power grip compared with fine finger manipulations are largely cortical in origin and suggest that the reticular system contributed, at least in part, to these effects.

Original languageEnglish (US)
Pages (from-to)2715-2730
Number of pages16
JournalJournal of Physiology
Volume595
Issue number8
DOIs
StatePublished - Apr 15 2017

Keywords

  • corticospinal tract
  • grasping
  • primary motor cortex
  • transcranial magnetic stimulation

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'Cortical and reticular contributions to human precision and power grip'. Together they form a unique fingerprint.

Cite this