TY - JOUR
T1 - Cosmological attractors and initial conditions for inflation
AU - Carrasco, John Joseph
AU - Kallosh, Renata
AU - Linde, Andrei
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/9/17
Y1 - 2015/9/17
N2 - Inflationary α-attractor models in supergravity, which provide excellent fits to the latest observational data, are based on the Poincaré disk hyperbolic geometry. We refine these models by constructing Kählerpotentials with built-in inflaton shift symmetry and by making a canonical choice of the Goldstino Kählerpotential. The refined models are stable with respect to all scalar fields at all α; no additional stabilization terms are required. The scalar potential V has a nearly Minkowski minimum at small values of the inflaton field φ and an infinitely long de Sitter (dS) valley of constant depth and width at large φ. Because of the infinite length of this shift-symmetric valley, the initial value of the inflaton field at the Planck density is expected to be extremely large. We show that the inflaton field φ does not change much until all fields lose their energy and fall to the bottom of the dS valley at large φ. This provides natural initial conditions for inflation driven by the inflaton field slowly rolling along the dS valley toward the minimum of the potential at small φ. A detailed description of this process is given for α-attractors in supergravity, but we believe that our general conclusions concerning naturalness of initial conditions for inflation are valid for a broad class of inflationary models with sufficiently flat potentials.
AB - Inflationary α-attractor models in supergravity, which provide excellent fits to the latest observational data, are based on the Poincaré disk hyperbolic geometry. We refine these models by constructing Kählerpotentials with built-in inflaton shift symmetry and by making a canonical choice of the Goldstino Kählerpotential. The refined models are stable with respect to all scalar fields at all α; no additional stabilization terms are required. The scalar potential V has a nearly Minkowski minimum at small values of the inflaton field φ and an infinitely long de Sitter (dS) valley of constant depth and width at large φ. Because of the infinite length of this shift-symmetric valley, the initial value of the inflaton field at the Planck density is expected to be extremely large. We show that the inflaton field φ does not change much until all fields lose their energy and fall to the bottom of the dS valley at large φ. This provides natural initial conditions for inflation driven by the inflaton field slowly rolling along the dS valley toward the minimum of the potential at small φ. A detailed description of this process is given for α-attractors in supergravity, but we believe that our general conclusions concerning naturalness of initial conditions for inflation are valid for a broad class of inflationary models with sufficiently flat potentials.
UR - http://www.scopus.com/inward/record.url?scp=84943638613&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943638613&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.92.063519
DO - 10.1103/PhysRevD.92.063519
M3 - Article
AN - SCOPUS:84943638613
VL - 92
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
SN - 1550-7998
IS - 6
M1 - 063519
ER -