Cost-Benefit quantification of ISHM in aerospace systems

Christopher Hoyle, Alexander F. Mehr, Irem Y. Turner, Wei Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Integrated Systems Health Management (ISHM) is an evolving technology used to detect, assess, and isolate faults in complex aerospace systems to improve safety. At the conceptual design level, system-level engineers must make decisions regarding the inclusion of ISHM and the extent and type of the sensing technologies used in various subsystems. In this paper, we propose a Cost-Benefit Analysis approach to initiate the ISHM design process. The key to this analysis is the formulation of an objective function that explicitly quantifies the cost-benefit factors involved with using ISHM technology in various subsystems. Ultimately, to determine the best ISHM system configuration, an objective is formulated, referred to as Profit, which is expressed as the product of system Availability (A) and Revenue per unit Availability (R), minus the sum of Cost of Detection (C D ) and Cost of Risk (C R ). Cost of Detection includes the cost of periodic inspection/maintenance and the cost of ISHM; Cost of Risk quantifies risk in financial terms as a function of the consequential cost of a fault and the probabilities of occurrence and detection. Increasing the ISHM footprint will generally lower Cost of Risk while raising Cost of Detection, while Availability will increase or decrease based upon the balance of the reliability and detectability of the sensors added, versus their ability to reduce total maintenance time. The analysis is conducted at the system functional level, with ISHM allocated to functional blocks in the optimization analysis. The proposed method is demonstrated using a simplified aerospace system design problem resulting in a configuration of sensors which optimizes the cost-benefit of the ISHM system for the given input parameters. In this problem, profit was increased by 11 %, inspection interval increased by a factor of 1.5, and cost of risk reduced by a factor of 2.4 over a system with no ISHM.

Original languageEnglish (US)
Title of host publication2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
Pages975-984
Number of pages10
DOIs
StatePublished - Jun 13 2008
Event27th Computers and Information in Engineering Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007 - Las Vegas, NV, United States
Duration: Sep 4 2007Sep 7 2007

Publication series

Name2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
Volume2 PART B

Other

Other27th Computers and Information in Engineering Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
CountryUnited States
CityLas Vegas, NV
Period9/4/079/7/07

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Mechanical Engineering
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Cost-Benefit quantification of ISHM in aerospace systems'. Together they form a unique fingerprint.

  • Cite this

    Hoyle, C., Mehr, A. F., Turner, I. Y., & Chen, W. (2008). Cost-Benefit quantification of ISHM in aerospace systems. In 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007 (pp. 975-984). (2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007; Vol. 2 PART B). https://doi.org/10.1115/DETC2007-35412