Counterfactual Generative Models for Time-Varying Treatments

Shenghao Wu, Wenbin Zhou, Minshuo Chen, Shixiang Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Estimating the counterfactual outcome of treatment is essential for decision-making in public health and clinical science, among others. Often, treatments are administered in a sequential, time-varying manner, leading to an exponentially increased number of possible counterfactual outcomes. Furthermore, in modern applications, the outcomes are high-dimensional and conventional average treatment effect estimation fails to capture disparities in individuals. To tackle these challenges, we propose a novel conditional generative framework capable of producing counterfactual samples under time-varying treatment, without the need for explicit density estimation. Our method carefully addresses the distribution mismatch between the observed and counterfactual distributions via a loss function based on inverse probability re-weighting, and supports integration with state-of-the-art conditional generative models such as the guided diffusion and conditional variational autoencoder. We present a thorough evaluation of our method using both synthetic and real-world data. Our results demonstrate that our method is capable of generating high-quality counterfactual samples and outperforms the state-of-the-art baselines.

Original languageEnglish (US)
Title of host publicationKDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages3402-3413
Number of pages12
ISBN (Electronic)9798400704901
DOIs
StatePublished - Aug 24 2024
Event30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024 - Barcelona, Spain
Duration: Aug 25 2024Aug 29 2024

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
ISSN (Print)2154-817X

Conference

Conference30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
Country/TerritorySpain
CityBarcelona
Period8/25/248/29/24

Keywords

  • conditional generative models
  • diffusion models
  • inverse probability of treatment weighting
  • longitudinal causal inference
  • marginal structural models
  • policy evaluation
  • variational auto-encoders

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Counterfactual Generative Models for Time-Varying Treatments'. Together they form a unique fingerprint.

Cite this