Critical attenuation and dispersion of longitudinal ultrasound near a nematic smectic - A phase transition

S. Bhattacharya*, Bimal K. Sarma, J. B. Ketterson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


We report a detailed study of the anomalous attenuation and velocity dispersion of longitudinal ultrasound near a nematic smectic-A phase transition in the liquid-crystal terephthal-bis-p-p-butylaniline. The measurements were performed at various frequencies and at various angles between the sound propagation direction and the symmetry direction. The attenuation anomaly is found to be dominated by an isotropic contribution in contradiction with older theories but in qualitative agreement with the recent ones. The results are consistent with the picture where the critical slowdown of fluctuations contributes to the anomaly both above and below the transition while a Landau-Khalatnikov-type relaxation of the smectic order parameter contributes below the transition in a way analogous to the transition in helium. From the anisotropy of the longitudinal sound we extracted the velocity of the "second-sound" mode which softens as the transition is approached from below and collapses to zero at the transition. Moreover, we attribute the pronounced dip in sound velocity to the presence of a Pippard-Buckingham- Fairbank anomaly. The results are discussed in the light of the current understanding of the dynamics of the nematic smectic-A phase transition.

Original languageEnglish (US)
Pages (from-to)2397-2412
Number of pages16
JournalPhysical Review B
Issue number5
StatePublished - 1981

ASJC Scopus subject areas

  • Condensed Matter Physics


Dive into the research topics of 'Critical attenuation and dispersion of longitudinal ultrasound near a nematic smectic - A phase transition'. Together they form a unique fingerprint.

Cite this