Cross-species conservation of open-channel block by Na channel β4 peptides reveals structural features required for resurgent Na current

Amanda H. Lewis, Indira M. Raman

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Voltage-gated Na channels in many neurons, including several in the cerebellum and brainstem, are specialized to allow rapid firing of action potentials. Repetitive firing is facilitated by resurgent Na current, which flows upon repolarization as Na channels recover through open states from block by an endogenous protein. The best candidate blocking protein to date is NaVβ4. The sequence of this protein diverges among species, however, while high-frequency firing is maintained, raising the question of whether the proposed blocking action of the NaVβ4 cytoplasmic tail has been conserved. Here, we find that, despite differences in the NaVv4 sequence, Purkinje cells isolated from embryonic chick have resurgent currents with kinetics and amplitudes indistinguishable from those in mouse Purkinje cells. Furthermore, synthetic peptides derived from the divergent NaVβ4 cytoplasmic tails from five species have the capacity to induce resurgent current in mouse hippocampal neurons, which lack a functional endogenous blocking protein. These data further support a blocking role for NaVβ4 and also indicate the relative importance of different residues in inducing open-channel block. To investigate the contribution of the few highly conserved residues to open-channel block, we synthesized several mutant peptides in which the identities and relative orientations of a phenylalanine and two lysines were disrupted. These mutant peptides produced currents with vastly different kinetics than did the species-derived peptides, suggesting that these residues are required for an open-channel block that approximates physiological resurgentNacurrent. Thus, if other blocking proteins exist, theymayshare these structural elements with the NaVβ4 cytoplasmic tail.

Original languageEnglish (US)
Pages (from-to)11527-11536
Number of pages10
JournalJournal of Neuroscience
Volume31
Issue number32
DOIs
StatePublished - Aug 10 2011

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Cross-species conservation of open-channel block by Na channel β4 peptides reveals structural features required for resurgent Na current'. Together they form a unique fingerprint.

Cite this