TY - JOUR
T1 - Crosstalk between signaling pathways in pemphigus
T2 - A role for endoplasmic reticulum stress in p38 Mitogen-activated protein kinase activation?
AU - Cipolla, Gabriel A.
AU - Park, Jong Kook
AU - Lavker, Robert M.
AU - Petzl-Erler, Maria Luiza
N1 - Funding Information:
This work was funded by the National Institutes of Health [grant number EY019463] to RL; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant numbers 478907/2013-3 and 446973/2014-9] to MP-E; Fundação Araucária/CNPq [PRONEX convênio 251/2013 protocolo 24.652] to MP-E; and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) [Bolsista CAPES—Processo 99999.006318/2015-00] to GC.
Publisher Copyright:
© 2017 Cipolla, Park, Lavker and Petzl-Erler.
PY - 2017/9/5
Y1 - 2017/9/5
N2 - Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus' pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa. However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.
AB - Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus' pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa. However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.
KW - Apoptolysis
KW - Autoimmunity
KW - Endoplasmic reticulum stress
KW - P38 mitogen-activated protein kinase
KW - Pemphigus
UR - http://www.scopus.com/inward/record.url?scp=85028746826&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028746826&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2017.01022
DO - 10.3389/fimmu.2017.01022
M3 - Article
C2 - 28928733
AN - SCOPUS:85028746826
SN - 1664-3224
VL - 8
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - SEP
M1 - 1022
ER -