TY - JOUR
T1 - Crystalline and glassy phases in the Cs/Bi/As/S system
AU - Bera, Tarun K.
AU - Iyer, Ratnasabapathy G.
AU - Malliakas, Christos D.
AU - Kanatzidis, Mercouri G.
PY - 2013/10/7
Y1 - 2013/10/7
N2 - The quaternary Cs2S/Bi/As/S system was studied in an attempt to introduce two different asymmetric but isoelectronic building units, namely, [BiIIIxSy] and [AsIII xSy], in a single structure. Reactions with a comparatively lower equivalent of arsenic in the Cs2S/Bi/As/S mixture led to the crystalline compound Cs3Bi(AsS4)2. The structure features tetrahedral [AsVS4]3- connected to BiIII centers to give infinite 1/ ∞[Bi(AsS4)23-] chains. When the basicity was raised in these low arsenic fluxes by increasing the Cs 2S fraction, the crystalline compound Cs9Bi(AsS 4)4, also featuring [AsVS4] 3- anions, was formed. On the other hand, arsenic-rich mixtures of Cs2S/Bi/As/S led to the formation of the glassy phase Cs 2BiAs3S7, which contains AsIII species. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and pair distribution function (PDF) analysis indicate the presence of As III-containing [AsnS2n+1] fragments in the glass structure. Several glasses in the series Csn-1BiAs nS2n+1 were also prepared using solid-state fusion reactions. The band gaps of the Csn-1BiAsnS2n+1 glasses are in the range of 1.51-1.81 eV, while that of the crystalline compound Cs3Bi(AsS4)2 is ∼2.33 eV. The thermal and optical behaviors of these compounds are correlated with their structures and building units.
AB - The quaternary Cs2S/Bi/As/S system was studied in an attempt to introduce two different asymmetric but isoelectronic building units, namely, [BiIIIxSy] and [AsIII xSy], in a single structure. Reactions with a comparatively lower equivalent of arsenic in the Cs2S/Bi/As/S mixture led to the crystalline compound Cs3Bi(AsS4)2. The structure features tetrahedral [AsVS4]3- connected to BiIII centers to give infinite 1/ ∞[Bi(AsS4)23-] chains. When the basicity was raised in these low arsenic fluxes by increasing the Cs 2S fraction, the crystalline compound Cs9Bi(AsS 4)4, also featuring [AsVS4] 3- anions, was formed. On the other hand, arsenic-rich mixtures of Cs2S/Bi/As/S led to the formation of the glassy phase Cs 2BiAs3S7, which contains AsIII species. X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and pair distribution function (PDF) analysis indicate the presence of As III-containing [AsnS2n+1] fragments in the glass structure. Several glasses in the series Csn-1BiAs nS2n+1 were also prepared using solid-state fusion reactions. The band gaps of the Csn-1BiAsnS2n+1 glasses are in the range of 1.51-1.81 eV, while that of the crystalline compound Cs3Bi(AsS4)2 is ∼2.33 eV. The thermal and optical behaviors of these compounds are correlated with their structures and building units.
UR - http://www.scopus.com/inward/record.url?scp=84885103663&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885103663&partnerID=8YFLogxK
U2 - 10.1021/ic4016542
DO - 10.1021/ic4016542
M3 - Article
C2 - 24063370
AN - SCOPUS:84885103663
SN - 0020-1669
VL - 52
SP - 11370
EP - 11376
JO - Inorganic chemistry
JF - Inorganic chemistry
IS - 19
ER -