Abstract
Molecular electronic spin qubits have great potential for use in quantum information science applications because their structure can be rationally tuned using synthetic chemistry. Their integration into a new class of materials, ion-paired frameworks, allows for the formation of ordered arrays of these molecular spin qubits. Three ion-paired frameworks with varying densities of paramagnetic Cu(II) porphyrins were isolated as micron-sized crystals suitable for characterization by single-crystal X-ray diffraction. Pulse-electron paramagnetic resonance (EPR) spectroscopy probed the spin coherence of these materials at temperatures up to 140 K. The crystals with the longest Cu-Cu distances had a spin-spin relaxation time (Tm) of 207 ns and a spin-lattice relaxation time (T1) of 1.8 ms at 5 K, which decreased at elevated temperature because of spin-phonon coupling. Crystals with shorter Cu-Cu distances also had lower T1 values because of enhanced cross-relaxation from qubit-qubit dipolar coupling. Frameworks with shorter Cu-Cu distances exhibited lower Tm values because of the increased interactions between qubits within the frameworks. Incorporating molecular electronic spin qubits in ion-paired frameworks enables control of composition, spacing, and interqubit interactions, providing a rational means to extend spin relaxation times.
Original language | English (US) |
---|---|
Pages (from-to) | 18447-18454 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 145 |
Issue number | 33 |
DOIs | |
State | Published - Aug 23 2023 |
ASJC Scopus subject areas
- General Chemistry
- Biochemistry
- Catalysis
- Colloid and Surface Chemistry
Fingerprint
Dive into the research topics of 'Crystalline Arrays of Copper Porphyrin Qubits Based on Ion-Paired Frameworks'. Together they form a unique fingerprint.Datasets
-
CCDC 2251275: Experimental Crystal Structure Determination
Moisanu, C. M. (Contributor), Jacobberger, R. M. (Contributor), Skala, L. P. (Contributor), Stern, C. L. (Contributor), Wasielewski, M. R. (Contributor) & Dichtel, W. R. (Contributor), Cambridge Crystallographic Data Centre, 2023
DOI: 10.5517/ccdc.csd.cc2fkmsf, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc2fkmsf&sid=DataCite
Dataset
-
CCDC 2251276: Experimental Crystal Structure Determination
Moisanu, C. M. (Contributor), Jacobberger, R. M. (Contributor), Skala, L. P. (Contributor), Stern, C. L. (Contributor), Wasielewski, M. R. (Contributor) & Dichtel, W. R. (Contributor), Cambridge Crystallographic Data Centre, 2023
DOI: 10.5517/ccdc.csd.cc2fkmtg, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc2fkmtg&sid=DataCite
Dataset
-
CCDC 2251277: Experimental Crystal Structure Determination
Moisanu, C. M. (Contributor), Jacobberger, R. M. (Contributor), Skala, L. P. (Contributor), Stern, C. L. (Contributor), Wasielewski, M. R. (Contributor) & Dichtel, W. R. (Contributor), Cambridge Crystallographic Data Centre, 2023
DOI: 10.5517/ccdc.csd.cc2fkmvh, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc2fkmvh&sid=DataCite
Dataset