Customized therapy using distributions of reaching errors

Moria F. Bittmann, James L. Patton, Felix C. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

While there has been recent success with robotic therapy approaches, individual differences in motor impairments motivate the need for customized therapy. Our latest work with healthy participants considered the likelihood of one's error to construct a customized force field training environment, which we termed an error field. We believe error statistics could characterize individual motor impairments for stroke survivors. Here we present preliminary results from a pilot study testing this therapy technique on individuals following stroke. We tracked the changes in error for three stroke survivors across multiple days using error field training, and found that participants' errors reduced for all target directions across sessions. We also used a modeling approach to test whether the changes in error reflected the specific mathematical structure of the intervention. These results provide encouraging preliminary evidence that error field training can be valuable for both characterizing deficits and custom-tailoring therapy.

Original languageEnglish (US)
Title of host publication2017 International Conference on Rehabilitation Robotics, ICORR 2017
EditorsArash Ajoudani, Panagiotis Artemiadis, Philipp Beckerle, Giorgio Grioli, Olivier Lambercy, Katja Mombaur, Domen Novak, Georg Rauter, Carlos Rodriguez Guerrero, Gionata Salvietti, Farshid Amirabdollahian, Sivakumar Balasubramanian, Claudio Castellini, Giovanni Di Pino, Zhao Guo, Charmayne Hughes, Fumiya Iida, Tommaso Lenzi, Emanuele Ruffaldi, Fabrizio Sergi, Gim Song Soh, Marco Caimmi, Leonardo Cappello, Raffaella Carloni, Tom Carlson, Maura Casadio, Martina Coscia, Dalia De Santis, Arturo Forner-Cordero, Matthew Howard, Davide Piovesan, Adriano Siqueira, Frank Sup, Masia Lorenzo, Manuel Giuseppe Catalano, Hyunglae Lee, Carlo Menon, Stanisa Raspopovic, Mo Rastgaar, Renaud Ronsse, Edwin van Asseldonk, Bram Vanderborght, Madhusudhan Venkadesan, Matteo Bianchi, David Braun, Sasha Blue Godfrey, Fulvio Mastrogiovanni, Andrew McDaid, Stefano Rossi, Jacopo Zenzeri, Domenico Formica, Nikolaos Karavas, Laura Marchal-Crespo, Kyle B. Reed, Nevio Luigi Tagliamonte, Etienne Burdet, Angelo Basteris, Domenico Campolo, Ashish Deshpande, Venketesh Dubey, Asif Hussain, Vittorio Sanguineti, Ramazan Unal, Glauco Augusto de Paula Caurin, Yasuharu Koike, Stefano Mazzoleni, Hyung-Soon Park, C. David Remy, Ludovic Saint-Bauzel, Nikos Tsagarakis, Jan Veneman, Wenlong Zhang
PublisherIEEE Computer Society
Pages658-663
Number of pages6
ISBN (Electronic)9781538622964
DOIs
StatePublished - Aug 11 2017
Event2017 International Conference on Rehabilitation Robotics, ICORR 2017 - London, United Kingdom
Duration: Jul 17 2017Jul 20 2017

Publication series

NameIEEE International Conference on Rehabilitation Robotics
ISSN (Print)1945-7898
ISSN (Electronic)1945-7901

Other

Other2017 International Conference on Rehabilitation Robotics, ICORR 2017
CountryUnited Kingdom
CityLondon
Period7/17/177/20/17

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Rehabilitation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Customized therapy using distributions of reaching errors'. Together they form a unique fingerprint.

Cite this