Abstract
Covalently linked cyclic metalloporphyrin dimers and tetramers have been demonstrated to be good shape-selective hosts for fullerene guests. The fullerene affinities of these hosts can readily be tuned by modulating the covalent linkage and the metal ions in the porphyrin subunits. A rigid Zn(porphyrin) dimer with conjugated bis(alkynyl) linkers exhibits a high selectivity towards C70 over C60 in toluene (K a,C70/Ka,C60 = ∼28). For the host structures examined, a synergistic combination of rigidity in the linker and electropositive Al ions gives rise to the strongest binding of C70. In the case of a bisected Zn(porphyrin) tetramer, two well-defined cavities exist; however, due to their comparatively small size, only one C60 can be accommodated. Studies of fullerene binding as a function of metal ion in a porphyrin divider suggest that the right combination of shape and steric match is essential to exploit both van der Waals and local-charge/induced-dipole interactions.
Original language | English (US) |
---|---|
Pages (from-to) | 12156-12162 |
Number of pages | 7 |
Journal | Dalton Transactions |
Volume | 41 |
Issue number | 39 |
DOIs | |
State | Published - Oct 21 2012 |
ASJC Scopus subject areas
- Inorganic Chemistry