Data-driven multiscale topology optimization using multi-response latent variable gaussian process

Liwei Wang, Siyu Tao, Ping Zhu*, Wei Chen*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The data-driven approach is emerging as a promising method for the topological design of the multiscale structure with greater efficiency. However, existing data-driven methods mostly focus on a single class of unit cells without considering multiple classes to accommodate spatially varying desired properties. The key challenge is the lack of inherent ordering or "distance" measure between different classes of unit cells in meeting a range of properties. To overcome this hurdle, we extend the newly developed latent-variable Gaussian process (LVGP) to creating multi-response LVGP (MRLVGP) for the unit cell libraries of metamaterials, taking both qualitative unit cell concepts and quantitative unit cell design variables as mixed-variable inputs. The MRLVGP embeds the mixed variables into a continuous design space based on their collective effect on the responses, providing substantial insights into the interplay between different geometrical classes and unit cell materials. With this model, we can easily obtain a continuous and differentiable transition between different unit cell concepts that can render gradient information for multiscale topology optimization. While the proposed approach has a broader impact on the concurrent topological and material design of engineered systems, we demonstrate its benefits through multiscale topology optimization with aperiodic unit cells. Design examples reveal that considering multiple unit cell types can lead to improved performance due to the consistent load-transferred paths for micro- and macrostructures.

Original languageEnglish (US)
Title of host publication46th Design Automation Conference (DAC)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884003
DOIs
StatePublished - 2020
EventASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020 - Virtual, Online
Duration: Aug 17 2020Aug 19 2020

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume11A-2020

Conference

ConferenceASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2020
CityVirtual, Online
Period8/17/208/19/20

Funding

The authors are grateful to Prof. K. Svanberg, from the Royal Institute of Technology, Sweden, for providing a copy of the MMA code for metamaterial designs. Support from the National Science Foundation (NSF) (Grant No. OAC 1835782) is greatly appreciated. Mr. Liwei Wang would like to acknowledge the support from the Zhiyuan Honors Program for Graduate Students of Shanghai Jiao Tong University.

Keywords

  • Data-driven design
  • Gaussian process
  • Mixed variables
  • Multi-class
  • Multiscale topology optimization

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Data-driven multiscale topology optimization using multi-response latent variable gaussian process'. Together they form a unique fingerprint.

Cite this