De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities

Research output: Contribution to journalArticlepeer-review

1427 Scopus citations

Abstract

Metal-organic frameworks-a class of porous hybrid materials built from metal ions and organic bridges-have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m2 g-1). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g-1) and carbon dioxide (2,315 mg g-1)-gases of high importance in the contexts of clean energy and climate alteration, respectively-in excellent agreement with predictions from modelling.

Original languageEnglish (US)
Pages (from-to)944-948
Number of pages5
JournalNature chemistry
Volume2
Issue number11
DOIs
StatePublished - Nov 2010

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint

Dive into the research topics of 'De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities'. Together they form a unique fingerprint.

Cite this