TY - JOUR
T1 - Decoding a new neural-machine interface for control of artificial limbs
AU - Zhou, Ping
AU - Lowery, Madeleine M.
AU - Englehart, Kevin B.
AU - Huang, He
AU - Li, Guanglin
AU - Hargrove, Levi
AU - Dewald, Julius P A
AU - Kuiken, Todd A.
PY - 2007/11
Y1 - 2007/11
N2 - An analysis of the motor control information content made available with a neural-machine interface (NMI) in four subjects is presented in this study. We have developed a novel NMI-called targeted muscle reinnervation (TMR) - to improve the function of artificial arms for amputees. TMR involves transferring the residual amputated nerves to nonfunctional muscles in amputees. The reinnervated muscles act as biological amplifiers of motor commands in the amputated nerves and the surface electromyogram (EMG) can be used to enhance control of a robotic arm. Although initial clinical success with TMR has been promising, the number of degrees of freedom of the robotic arm that can be controlled has been limited by the number of reinnervated muscle sites. In this study we assess how much control information can be extracted from reinnervated muscles using high-density surface EMG electrode arrays to record surface EMG signals over the reinnervated muscles. We then applied pattern classification techniques to the surface EMG signals. High accuracy was achieved in the classification of 16 intended arm, hand, and finger/thumb movements. Preliminary analyses of the required number of EMG channels and computational demands demonstrate clinical feasibility of these methods. This study indicates that TMR combined with pattern-recognition techniques has the potential to further improve the function of prosthetic limbs. In addition, the results demonstrate that the central motor control system is capable of eliciting complex efferent commands for a missing limb, in the absence of peripheral feedback and without retraining of the pathways involved.
AB - An analysis of the motor control information content made available with a neural-machine interface (NMI) in four subjects is presented in this study. We have developed a novel NMI-called targeted muscle reinnervation (TMR) - to improve the function of artificial arms for amputees. TMR involves transferring the residual amputated nerves to nonfunctional muscles in amputees. The reinnervated muscles act as biological amplifiers of motor commands in the amputated nerves and the surface electromyogram (EMG) can be used to enhance control of a robotic arm. Although initial clinical success with TMR has been promising, the number of degrees of freedom of the robotic arm that can be controlled has been limited by the number of reinnervated muscle sites. In this study we assess how much control information can be extracted from reinnervated muscles using high-density surface EMG electrode arrays to record surface EMG signals over the reinnervated muscles. We then applied pattern classification techniques to the surface EMG signals. High accuracy was achieved in the classification of 16 intended arm, hand, and finger/thumb movements. Preliminary analyses of the required number of EMG channels and computational demands demonstrate clinical feasibility of these methods. This study indicates that TMR combined with pattern-recognition techniques has the potential to further improve the function of prosthetic limbs. In addition, the results demonstrate that the central motor control system is capable of eliciting complex efferent commands for a missing limb, in the absence of peripheral feedback and without retraining of the pathways involved.
UR - http://www.scopus.com/inward/record.url?scp=36248956103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36248956103&partnerID=8YFLogxK
U2 - 10.1152/jn.00178.2007
DO - 10.1152/jn.00178.2007
M3 - Article
C2 - 17728391
AN - SCOPUS:36248956103
SN - 0022-3077
VL - 98
SP - 2974
EP - 2982
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 5
ER -