Decoding Hindlimb Movement for a Brain Machine Interface after a Complete Spinal Transection

Anitha Manohar, Robert Davisson Flint, Eric Knudsen, Karen A. Moxon

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Stereotypical locomotor movements can be made without input from the brain after a complete spinal transection. However, the restoration of functional gait requires descending modulation of spinal circuits to independently control the movement of each limb. To evaluate whether a brain-machine interface (BMI) could be used to regain conscious control over the hindlimb, rats were trained to press a pedal and the encoding of hindlimb movement was assessed using a BMI paradigm. Off-line, information encoded by neurons in the hindlimb sensorimotor cortex was assessed. Next neural population functions, or weighted representations of the neuronal activity, were used to replace the hindlimb movement as a trigger for reward in real-time (on-line decoding) in three conditions: while the animal could still press the pedal, after the pedal was removed and after a complete spinal transection. A novel representation of the motor program was learned when the animals used neural control to achieve water reward (e.g. more information was conveyed faster). After complete spinal transection, the ability of these neurons to convey information was reduced by more than 40%. However, this BMI representation was relearned over time despite a persistent reduction in the neuronal firing rate during the task. Therefore, neural control is a general feature of the motor cortex, not restricted to forelimb movements, and can be regained after spinal injury.

Original languageEnglish (US)
Article numbere52173
JournalPloS one
Volume7
Issue number12
DOIs
StatePublished - Dec 27 2012

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Decoding Hindlimb Movement for a Brain Machine Interface after a Complete Spinal Transection'. Together they form a unique fingerprint.

Cite this