Deep Gaussian processes for multiple instance learning: Application to CT intracranial hemorrhage detection

Miguel López-Pérez*, Arne Schmidt, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background and objective: Intracranial hemorrhage (ICH) is a life-threatening emergency that can lead to brain damage or death, with high rates of mortality and morbidity. The fast and accurate detection of ICH is important for the patient to get an early and efficient treatment. To improve this diagnostic process, the application of Deep Learning (DL) models on head CT scans is an active area of research. Although promising results have been obtained, many of the proposed models require slice-level annotations by radiologists, which are costly and time-consuming. Methods: We formulate the ICH detection as a problem of Multiple Instance Learning (MIL) that allows training with only scan-level annotations. We develop a new probabilistic method based on Deep Gaussian Processes (DGP) that is able to train with this MIL setting and accurately predict ICH at both slice- and scan-level. The proposed DGPMIL model is able to capture complex feature relations by using multiple Gaussian Process (GP) layers, as we show experimentally. Results: To highlight the advantages of DGPMIL in a general MIL setting, we first conduct several controlled experiments on the MNIST dataset. We show that multiple GP layers outperform one-layer GP models, especially for complex feature distributions. For ICH detection experiments, we use two public brain CT datasets (RSNA and CQ500). We first train a Convolutional Neural Network (CNN) with an attention mechanism to extract the image features, which are fed into our DGPMIL model to perform the final predictions. The results show that DGPMIL model outperforms VGPMIL as well as the attention-based CNN for MIL and other state-of-the-art methods for this problem. The best performing DGPMIL model reaches an AUC-ROC of 0.957 (resp. 0.909) and an AUC-PR of 0.961 (resp. 0.889) on the RSNA (resp. CQ500) dataset. Conclusion: The competitive performance at slice- and scan-level shows that DGPMIL model provides an accurate diagnosis on slices without the need for slice-level annotations by radiologists during training. As MIL is a common problem setting, our model can be applied to a broader range of other tasks, especially in medical image classification, where it can help the diagnostic process.

Original languageEnglish (US)
Article number106783
JournalComputer Methods and Programs in Biomedicine
Volume219
DOIs
StatePublished - Jun 2022

Keywords

  • Deep Gaussian processes
  • Intracranial hemorrhage detection
  • Multiple instance learning
  • Weakly supervised learning

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Health Informatics

Fingerprint

Dive into the research topics of 'Deep Gaussian processes for multiple instance learning: Application to CT intracranial hemorrhage detection'. Together they form a unique fingerprint.

Cite this