Deep Learning for Musculoskeletal Image Analysis

Ismail Irmakci, Syed Muhammad Anwar, Drew A. Torigian, Ulas Bagci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Scopus citations

Abstract

The diagnosis, prognosis, and treatment of patients with musculoskeletal (MSK) disorders require radiology imaging (using computed tomography, magnetic resonance imaging (MRI), and ultrasound) and their precise analysis by expert radiologists. Radiology scans can also help assessment of metabolic health, aging, and diabetes. This study presents how machine learning, specifically deep learning methods, can be used for rapid and accurate image analysis of MRI scans, an unmet clinical need in MSK radiology. As a challenging example, we focus on automatic analysis of knee images from MRI scans and study machine learning classification of various abnormalities including meniscus and anterior cruciate ligament tears. Using widely used convolutional neural network (CNN) based architectures, we comparatively evaluated the knee abnormality classification performances of different neural network architectures under limited imaging data regime and compared single and multi-view imaging when classifying the abnormalities. Promising results indicated the potential use of multi-view deep learning based classification of MSK abnormalities in routine clinical assessment.

Original languageEnglish (US)
Title of host publicationConference Record - 53rd Asilomar Conference on Circuits, Systems and Computers, ACSSC 2019
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages1481-1485
Number of pages5
ISBN (Electronic)9781728143002
DOIs
StatePublished - Nov 2019
Event53rd Asilomar Conference on Circuits, Systems and Computers, ACSSC 2019 - Pacific Grove, United States
Duration: Nov 3 2019Nov 6 2019

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2019-November
ISSN (Print)1058-6393

Conference

Conference53rd Asilomar Conference on Circuits, Systems and Computers, ACSSC 2019
Country/TerritoryUnited States
CityPacific Grove
Period11/3/1911/6/19

Keywords

  • Musculoskeletal radiology
  • deep multi-view classification
  • knee abnormalities
  • magnetic resonance imaging

ASJC Scopus subject areas

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Deep Learning for Musculoskeletal Image Analysis'. Together they form a unique fingerprint.

Cite this