Deep SED-Net with interactive learning for multiple testicular cell types segmentation and cell composition analysis in mouse seminiferous tubules

Shi Liang, Haoda Lu, Min Zang, Xiangxue Wang, Yiping Jiao, Tingting Zhao, Eugene Yujun Xu, Jun Xu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The development of mouse spermatozoa is a continuous process from spermatogonia, spermatocytes, spermatids to mature sperm. Those developing germ cells (spermatogonia, spermatocyte, and spermatids) together with supporting sertoli cells are all enclosed inside seminiferous tubules of the testis, their identification is key to testis histology and pathology analysis. Automated segmentation of all these cells is a challenging task because of their dynamical changes in different stages. The accurate segmentation of testicular cells is critical in developing computerized spermatogenesis staging. In this paper, we present a novel segmentation model, SED-Net, which incorporates a squeeze-and-excitation (SE) module and a dense unit. The SE module optimizes and obtains features from different channels, whereas the dense unit uses fewer parameters to enhance the use of features. A human-in-the-loop strategy, named deep interactive learning, is developed to achieve better segmentation performance while reducing the workload of manual annotation and time consumption. Across a cohort of 274 seminiferous tubules from stages VI to VIII, the SED-Net achieved a pixel accuracy of 0.930, a mean pixel accuracy of 0.866, a mean intersection over union of 0.710, and a frequency weighted intersection over union of 0.878, respectively, in terms of four types of testicular cell segmentation. There is no significant difference between manual annotated tubules and segmentation results by SED-Net in cell composition analysis for tubules from stages VI to VIII. In addition, we performed cell composition analysis on 2346 segmented seminiferous tubule images from 12 segmented testicular section results. The results provided quantitation of cells of various testicular cell types across 12 stages. The rule reflects the cell variation tendency across 12 stages during development of mouse spermatozoa. The method could enable us to not only analyze cell morphology and staging during the development of mouse spermatozoa but also potentially could be applied to the study of reproductive diseases such as infertility.

Original languageEnglish (US)
JournalCytometry Part A
DOIs
StateAccepted/In press - 2022

Keywords

  • deep interactive learning
  • mouse testis
  • seminiferous tubules
  • spermatozoa development
  • testicular cell segmentation

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Histology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Deep SED-Net with interactive learning for multiple testicular cell types segmentation and cell composition analysis in mouse seminiferous tubules'. Together they form a unique fingerprint.

Cite this