TY - JOUR
T1 - Demographics of Hierarchical Black Hole Mergers in Dense Star Clusters
AU - Fragione, Giacomo
AU - Rasio, Frederic A.
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/7/1
Y1 - 2023/7/1
N2 - With about one hundred mergers of binary black holes (BBHs) detected via gravitational waves by the LIGO-Virgo-KAGRA (LVK) Collaboration, our understanding of the darkest objects in the universe has taken unparalleled steps forward. While most of the events are expected to consist of black holes (BHs) directly formed from the collapse of massive stars, some may contain the remnants of previous BBH mergers. In the most massive globular clusters and in nuclear star clusters, successive mergers can produce second- (2G) or higher-generation BHs, and even form intermediate-mass BHs (IMBHs). Overall, we predict that up to ∼10%, ∼1%, or ∼0.1% of the BBH mergers have one component being a 2G, 3G, or 4G BH, respectively. Assuming that ∼500 BBH mergers will be detected in O4 by LVK, this means that ∼50, ∼5, or ∼0.5 events, respectively, will involve a 2G, 3G, or 4G BH, if most sources are produced dynamically in dense star clusters. With their distinctive signatures of higher masses and spins, such hierarchical mergers offer an unprecedented opportunity to learn about the BH populations in the densest stellar systems and to shed light on the elusive IMBHs that may form therein.
AB - With about one hundred mergers of binary black holes (BBHs) detected via gravitational waves by the LIGO-Virgo-KAGRA (LVK) Collaboration, our understanding of the darkest objects in the universe has taken unparalleled steps forward. While most of the events are expected to consist of black holes (BHs) directly formed from the collapse of massive stars, some may contain the remnants of previous BBH mergers. In the most massive globular clusters and in nuclear star clusters, successive mergers can produce second- (2G) or higher-generation BHs, and even form intermediate-mass BHs (IMBHs). Overall, we predict that up to ∼10%, ∼1%, or ∼0.1% of the BBH mergers have one component being a 2G, 3G, or 4G BH, respectively. Assuming that ∼500 BBH mergers will be detected in O4 by LVK, this means that ∼50, ∼5, or ∼0.5 events, respectively, will involve a 2G, 3G, or 4G BH, if most sources are produced dynamically in dense star clusters. With their distinctive signatures of higher masses and spins, such hierarchical mergers offer an unprecedented opportunity to learn about the BH populations in the densest stellar systems and to shed light on the elusive IMBHs that may form therein.
UR - http://www.scopus.com/inward/record.url?scp=85164949292&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85164949292&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/acd9c9
DO - 10.3847/1538-4357/acd9c9
M3 - Article
AN - SCOPUS:85164949292
SN - 0004-637X
VL - 951
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 129
ER -