Dependence of Tribological Performance and Tribopolymerization on the Surface Binding Strength of Selected Cycloalkane-Carboxylic Acid Additives

Qiang Ma, Arman Mohammad Khan, Q. Jane Wang*, Yip-Wah-Chung

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We recently reported the use of cyclopropanecarboxylic acid (CPCa) as a model additive that can readily react under the combined effect of flash heating and stress in steel tribocontacts to form tribopolymers, along with marked improvement in tribological performance. In this paper, we present results of how chemical structural modification of CPCa may impact on the formation of tribopolymers and hence friction and wear properties, both by experiments and molecular dynamics simulation. Four lubricant additives, viz., CPCa, cyclobutanecarboxylic acid (CBCa), cyclopropane-1,1-dicarboxylic acid (CPDCa), and cyclobutane-1,1-dicarboxylic acid (CBDCa) consisting of a metastable ring structure and one or two carboxyl groups dissolved in an ester base oil were studied. Friction and wear rate using these additives rank in the order of CPDCa < CBDCa < CPCa < CBCa. Raman spectroscopy analysis reveals that these additive molecules form tribopolymer films at the contact area. Molecular dynamics simulation shows that CPCa with the less stable cyclopropane ring fragments more readily than CBCa. Such fragmentation appears to be essential for subsequent tribopolymerization and formation of protective tribofilms. These simulations further demonstrate that having two carboxyl groups as in the case of CPDCa results in stronger binding of the additive molecules to the surface, thus increasing the residence time and hence facilitating mechanically or thermally induced dissociation and subsequent polymerization. The net result is that CPDCa gives the lowest friction and negligible wear under our testing conditions.

Original languageEnglish (US)
Article number86
JournalTribology Letters
Volume68
Issue number3
DOIs
StatePublished - Sep 1 2020

Keywords

  • Adsorption strength
  • Dissociation kinetics
  • Lubricant additive
  • Tribopolymerization

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Dependence of Tribological Performance and Tribopolymerization on the Surface Binding Strength of Selected Cycloalkane-Carboxylic Acid Additives'. Together they form a unique fingerprint.

Cite this