Abstract
We recently reported the use of cyclopropanecarboxylic acid (CPCa) as a model additive that can readily react under the combined effect of flash heating and stress in steel tribocontacts to form tribopolymers, along with marked improvement in tribological performance. In this paper, we present results of how chemical structural modification of CPCa may impact on the formation of tribopolymers and hence friction and wear properties, both by experiments and molecular dynamics simulation. Four lubricant additives, viz., CPCa, cyclobutanecarboxylic acid (CBCa), cyclopropane-1,1-dicarboxylic acid (CPDCa), and cyclobutane-1,1-dicarboxylic acid (CBDCa) consisting of a metastable ring structure and one or two carboxyl groups dissolved in an ester base oil were studied. Friction and wear rate using these additives rank in the order of CPDCa < CBDCa < CPCa < CBCa. Raman spectroscopy analysis reveals that these additive molecules form tribopolymer films at the contact area. Molecular dynamics simulation shows that CPCa with the less stable cyclopropane ring fragments more readily than CBCa. Such fragmentation appears to be essential for subsequent tribopolymerization and formation of protective tribofilms. These simulations further demonstrate that having two carboxyl groups as in the case of CPDCa results in stronger binding of the additive molecules to the surface, thus increasing the residence time and hence facilitating mechanically or thermally induced dissociation and subsequent polymerization. The net result is that CPDCa gives the lowest friction and negligible wear under our testing conditions.
| Original language | English (US) |
|---|---|
| Article number | 86 |
| Journal | Tribology Letters |
| Volume | 68 |
| Issue number | 3 |
| DOIs | |
| State | Published - Sep 1 2020 |
Funding
The authors would like to thank the support from the US National Science Foundation (Grant No. CMMI-1662606). This work made use of the Keck-II Facility of Northwestern University’s NUANCE Center, which has received support from the Keck Foundation, the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the Materials Research Center (NSF DMR-1121262), the McCormick Research Catalyst Awards Fund, Grant No. 10038293, and the International Institute for Nanotechnology (IIN) at Northwestern University. Qiang Ma would also like to acknowledge the scholarship support from China Scholarship Council (CSC, No. 201806280152). This research was supported in part through the computational resources and staff contributions provided for the Quest high-performance computing facility at Northwestern University, which is jointly supported by the Office of the Provost, the Office for Research, and Northwestern University Information Technology.
Keywords
- Adsorption strength
- Dissociation kinetics
- Lubricant additive
- Tribopolymerization
ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Surfaces and Interfaces
- Surfaces, Coatings and Films