Abstract
Using a first-principles approach, we design the heteroanionic oxynitride MoON to exhibit a first-order isosymmetric thermally activated Peierls-type metal-insulator transition (MIT). We identify a ground state insulating phase (α-MoON) with monoclinic Pc symmetry and a metastable high temperature metallic phase (β-MoON) of equivalent symmetry. We find that ordered fac-MoO3N3 octahedra with edge and corner connectivity stabilize the twisted Mo-Mo dimers present in the α phase, which activate the MIT through electron localization within the 4d a1g manifold. By analyzing the temperature dependence of the soft zone-boundary instability driving the MIT, we estimate an ordering temperature TMIT∼900 K. Our work shows that electronic transitions can be designed by exploiting multiple anions, and heteroanionic materials could offer new insights into the microscopic electron-lattice interactions governing unresolved transitions in homoanionic oxides.
Original language | English (US) |
---|---|
Article number | 236402 |
Journal | Physical review letters |
Volume | 123 |
Issue number | 23 |
DOIs | |
State | Published - Dec 3 2019 |
ASJC Scopus subject areas
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Design of Heteroanionic MoON Exhibiting a Peierls Metal-Insulator Transition'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical review letters, Vol. 123, No. 23, 236402, 03.12.2019.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Design of Heteroanionic MoON Exhibiting a Peierls Metal-Insulator Transition
AU - Szymanski, Nathan J.
AU - Walters, Lauren N.
AU - Puggioni, Danilo
AU - Rondinelli, James M.
N1 - Funding Information: We propose targeted synthesis of MoON through either ammonolysis reactions with homoanionic compounds or oxidation of MoN 2 thin films following growth with subsequent transport or optical measurements to assess the predicted Peierls MIT occurring near 900 K. The β → α transition is characterized by the formation of twisted Mo dimers, which lift band degeneracies and crossings to form a singlet state in the 4 d a 1 g -derived bands. This electronic configuration and the coupled lattice instability are enabled by the multiple oxide and nitride anions arranged in a fac configuration, which enable the d 1 band filling and critical axial ratio. Our work shows how studies of heteroanionic materials enable better understanding of complex transitions and anion-exchange could be applied to newly-discovered compounds exhibiting transitions in which electron correlation, Jahn-Teller effects, and metal-metal bonding compete, e.g., iron oxides ( Fe 4 O 5 ) [70] , hollandite-type vanadates and manganates [71,72] , and perovskite ferroelectrics [73] . Heteroanionic chemistries could also be exploited to design and deliver topological and quantum materials platforms [74,75] for future (opto)electronics. N. J. S. was supported by the National Science Foundation’s (NSF) MRSEC program (DMR-1720319) at the Materials Research Center of Northwestern University. L. N. W. and J. M. R. were supported by NSF under DMR-1454688. The computational contributions of D. P. were supported by the Army Research Office through Grant No. W911NF-15-1-0017. Computations were performed using the QUEST HPC facility at Northwestern University and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF under ACI-1548562 [76] . N. J. S. and L. N. W. contributed equally to this work. [1] 1 Z. Yang , C. Ko , and S. Ramanathan , Annu. Rev. Mater. Res. 41 , 337 ( 2011 ). ARMRCU 1531-7331 10.1146/annurev-matsci-062910-100347 [2] 2 B. Rogers , R. D. Shannon , A. W. Sleight , and J. L. Gillson , Inorg. Chem. 8 , 841 ( 1969 ). INOCAJ 0020-1669 10.1021/ic50074a029 [3] 3 J. Varignon , M. Bibes , and A. Zunger , Nat. Commun. 10 , 1658 ( 2019 ). NCAOBW 2041-1723 10.1038/s41467-019-09698-6 [4] 4 H. van Gog , W. Li , C. Fang , R. S. Koster , M. Dijkstra , and M. van Huis , NPJ 2D Mater. Appl. 3 , 18 ( 2019 ). 10.1038/s41699-019-0100-z [5] 5 V. Eyert , Ann. Phys. (Amsterdam) 11 , 650 ( 2002 ). APNYA6 0003-4916 10.1002/1521-3889(200210)11:93.0.CO;2-K [6] 6 J. B. Goodenough , J. Solid State Chem. 3 , 490 ( 1971 ). JSSCBI 0022-4596 10.1016/0022-4596(71)90091-0 [7] 7a P. Song , W. Guan , C. Yao , Z. M. Su , Z. J. Wu , J. D. Feng , and L. K. Yan , Theor. Chem. Acc. 117 , 407 ( 2007 ); TCACFW 1432-2234 10.1007/s00214-006-0168-3 7b M. Bühl , C. Reimann , D. A. Pantazis , T. Bredow , and F. Neese , J. Chem. Theory Comput. 4 , 1449 ( 2008 ). JCTCCE 1549-9618 10.1021/ct800172j [8] 8 J. Varignon , M. Bibes , and A. Zunger , Phys. Rev. B 100 , 035119 ( 2019 ). PRBMDO 2469-9950 10.1103/PhysRevB.100.035119 [9] 9 H. T. Dang , A. J. Millis , and C. A. Marianetti , Phys. Rev. B 89 , 161113(R) ( 2014 ). PRBMDO 1098-0121 10.1103/PhysRevB.89.161113 [10] 10 N. Fukushima , S. Tanaka , and K. Ando , Jpn. J. Appl. Phys. 29 , L2190 ( 1990 ). JAPNDE 0021-4922 10.1143/JJAP.29.L2190 [11] 11 J. Varignon , M. N. Grisolia , D. Preziosi , P. Ghosez , and M. Bibes , Phys. Rev. B 96 , 235106 ( 2017 ). PRBMDO 2469-9950 10.1103/PhysRevB.96.235106 [12] 12 I. I. Mazin , D. I. Khomskii , R. Lengsdorf , J. A. Alonso , W. G. Marshall , R. M. Ibberson , A. Podlesnyak , M. J. Martinez-Lope , and M. M. Abd-Elmeguid , Phys. Rev. Lett. 98 , 176406 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.98.176406 [13] 13 P. W. Anderson , Phys. Rev. 102 , 1008 ( 1956 ). PHRVAO 0031-899X 10.1103/PhysRev.102.1008 [14] 14 Y. Zhang , M. M. Schmitt , A. Mercy , J. Wang , and P. Ghosez , Phys. Rev. B 98 , 081108(R) ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.98.081108 [15] 15 Z. Liao , N. Gauquelin , R. J. Green , K. Müller-Caspary , I. Lobato , L. Li , S. Van Aert , J. Verbeeck , M. Huijben , M. N. Grisolia , V. Rouco , R. El Hage , J. E. Villegas , A. Mercy , M. Bibes , P. Ghosez , G. A. Sawatzky , G. Rijnders , and G. Koster , Proc. Natl. Acad. Sci. U.S.A. 115 , 9515 ( 2018 ). PNASA6 0027-8424 10.1073/pnas.1807457115 [16] 16 Q. Han and A. Millis , Phys. Rev. Lett. 121 , 067601 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.121.067601 [17] 17a J. K. Harada , N. Charles , K. R. Poppelmeier , and J. M. Rondinelli , Adv. Mater. 31 , 1805295 ( 2019 ); ADVMEW 0935-9648 10.1002/adma.201805295 17b H. Kageyama , K. Hayashi , K. Maeda , J. P. Attfield , Z. Hiroi , J. M. Rondinelli , and K. R. Poeppelmeier , Nat. Commun. 9 , 772 ( 2018 ). NCAOBW 2041-1723 10.1038/s41467-018-02838-4 [18] 18a T. T. Tran , M. Gooch , B. Lorenz , A. P. Litvinchuk , M. G. S. II , J. Brgoch , P. C. W. Chu , and A. M. Guloy , J. Am. Chem. Soc. 137 , 636 ( 2015 ); JACSAT 0002-7863 10.1021/ja511745q 18b V. V. Gapontsev , D. I. Khomskii , and S. V. Streltsov , J. Magn. Magn. Mater. 420 , 28 ( 2016 ). JMMMDC 0304-8853 10.1016/j.jmmm.2016.06.084 [19] 19 Z. Hiroi , Prog. Solid State Chem. 43 , 47 ( 2015 ). PSSTAW 0079-6786 10.1016/j.progsolidstchem.2015.02.001 [20] 20 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.123.236402 for computational details and theory, structural data, complete band structures and density of states, calculations supporting energetic stability and behavior, which also includes Refs. [21–52] not cited in the main text. [21] 21 G. Kresse and J. Hafner , Phys. Rev. B 47 , 558 ( 1993 ). PRBMDO 0163-1829 10.1103/PhysRevB.47.558 [22] 22 G. Kresse and J. Hafner , Phys. Rev. B 49 , 14251 ( 1994 ). PRBMDO 0163-1829 10.1103/PhysRevB.49.14251 [23] 23 G. Kresse and J. Furthmüller , Comput. Mater. Sci. 6 , 15 ( 1996 ). CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0 [24] 24 G. Kresse and J. Furthmüller , Phys. Rev. B 54 , 11169 ( 1996 ). PRBMDO 0163-1829 10.1103/PhysRevB.54.11169 [25] 25 J. P. Perdew , A. Ruzsinszky , G. I. Csonka , O. A. Vydrov , G. E. Scuseria , L. A. Constantin , X. Zhou , and K. Burke , Phys. Rev. Lett. 100 , 136406 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.100.136406 [26] 26 P. E. Blöchl , Phys. Rev. B 50 , 17953 ( 1994 ). PRBMDO 0163-1829 10.1103/PhysRevB.50.17953 [27] 27 S. L. Dudarev , G. A. Botton , S. Y. Savrasov , C. J. Humphreys , and A. P. Sutton , Phys. Rev. B 57 , 1505 ( 1998 ). PRBMDO 0163-1829 10.1103/PhysRevB.57.1505 [28] 28 B. Fultz , Prog. Mater. Sci. 55 , 247 ( 2010 ). PRMSAQ 0079-6425 10.1016/j.pmatsci.2009.05.002 [29] 29 A. Togo and I. Tanaka , Scr. Mater. 108 , 1 ( 2015 ). SCMAF7 1359-6462 10.1016/j.scriptamat.2015.07.021 [30] 30 O. Hellman , I. A. Abrikosov , and S. I. Simak , Phys. Rev. B 84 , 180301(R) ( 2011 ). PRBMDO 1098-0121 10.1103/PhysRevB.84.180301 [31] 31 O. Hellman and I. A. Abrikosov , Phys. Rev. B 88 , 144301 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.88.144301 [32] 32 S. Nosé , Mol. Phys. 52 , 255 ( 1984 ). MOPHAM 0026-8976 10.1080/00268978400101201 [33] 33 S.-L. Shang , J. Wang , Y. Du , and Z. K. Liu , Comput. Mater. Sci. 50 , 2096 ( 2011 ). CMMSEM 0927-0256 10.1016/j.commatsci.2011.02.015 [34] 34 P. Souvatzis , O. Eriksson , M. I. Katsnelson , and S. P. Rudin , Phys. Rev. Lett. 100 , 095901 ( 2008 ). PRLTAO 0031-9007 10.1103/PhysRevLett.100.095901 [35] 35 S.-L. Shang , Y. Wang , and Z.-K. Liu , Comput. Mater. Sci. 47 , 1040 ( 2010 ). CMMSEM 0927-0256 10.1016/j.commatsci.2009.12.006 [36] 36 A. R. Oganov , J. P. Brodholt , and G. D. Price , Phys. Earth Planet. Inter. 122 , 277 ( 2000 ). PEPIAM 0031-9201 10.1016/S0031-9201(00)00197-7 [37] 37 Z.-G. Mei , S.-L. Shang , Y. Wang , and Z.-K. Liu , Phys. Rev. B 80 , 104116 ( 2009 ). PRBMDO 1098-0121 10.1103/PhysRevB.80.104116 [38] 38 J. E. Saal , Y. Wang , S.-L. Shang , and Z.-K. Liu , Inorg. Chem. 49 , 10291 ( 2010 ). INOCAJ 0020-1669 10.1021/ic100835a [39] 39 Y. Le Page and P. Saxe , Phys. Rev. B 65 , 104104 ( 2002 ). PRBMDO 0163-1829 10.1103/PhysRevB.65.104104 [40] 40 K. Inzani , M. Nematollahi , F. Vullum-Bruer , T. Grande , T. W. Reenaas , and S. M. Selbach , Phys. Chem. Chem. Phys. 19 , 9232 ( 2017 ). PPCPFQ 1463-9076 10.1039/C7CP00644F [41] 41 S. Yu , B. Huang , X. Jia , Q. Zeng , A. R. Oganov , L. Zhang , and G. Frapper , J. Phys. Chem. C 120 , 11060 ( 2016 ). JPCCCK 1932-7447 10.1021/acs.jpcc.6b00665 [42] 42 B. A. S. I. Oleynik , Inorg. Chem. 56 , 13321 ( 2017 ). INOCAJ 0020-1669 10.1021/acs.inorgchem.7b02102 [43] 43 A. Jain , S. P. Ong , G. Hautier , W. Chen , W. D. Richards , S. Dacek , S. Cholia , D. Gunter , D. Skinner , G. Ceder , and K. A. Persson , APL Mater. 1 , 011002 ( 2013 ). AMPADS 2166-532X 10.1063/1.4812323 [44] 44 A. Zunger , S.-H. Wei , L. G. Ferreira , and J. E. Bernard , Phys. Rev. Lett. 65 , 353 ( 1990 ). PRLTAO 0031-9007 10.1103/PhysRevLett.65.353 [45] 45 A. van de Walle and G. Ceder , J. Phase Equilib. 23 , 348 ( 2002 ). JPEQE6 1054-9714 10.1361/105497102770331596 [46] 46 A. van de Walle and M. Asta , Model. Simul. Mater. Sci. Eng. 10 , 521 ( 2002 ). MSMEEU 0965-0393 10.1088/0965-0393/10/5/304 [47] 47 A. van de Walle , M. Asta , and G. Ceder , CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 26 , 539 ( 2002 ). CCCTD6 0364-5916 10.1016/S0364-5916(02)80006-2 [48] 48 A. van de Walle , CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33 , 266 ( 2009 ). CCCTD6 0364-5916 10.1016/j.calphad.2008.12.005 [49] 49 G. L. W. Hart and R. W. Forcade , Phys. Rev. B 77 , 224115 ( 2008 ). PRBMDO 1098-0121 10.1103/PhysRevB.77.224115 [50] 50 A. van de Walle , P. Tiwary , M. de Jong , D. Olmsted , M. Asta , A. Dick , D. Shin , Y. Wang , L.-Q. Chen , and Z.-K. Liu , CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 42 , 13 ( 2013 ). CCCTD6 0364-5916 10.1016/j.calphad.2013.06.006 [51] 51 A. O’Hara and A. A. Demkov , Phys. Rev. B 91 , 094305 ( 2015 ). PRBMDO 1098-0121 10.1103/PhysRevB.91.094305 [52] 52 S. Kim , K. Kim , C.-J. Kang , and B. I. Min , Phys. Rev. B 87 , 195106 ( 2013 ). PRBMDO 1098-0121 10.1103/PhysRevB.87.195106 [53] 53 V. Eyert , Europhys. Lett. 58 , 851 ( 2002 ). EULEEJ 0295-5075 10.1209/epl/i2002-00452-6 [54] 54 L. Zhu , J. Zhou , Z. Guo , and Z. Sun , Appl. Phys. Lett. 106 , 091903 ( 2015 ). APPLAB 0003-6951 10.1063/1.4913904 [55] 55 D. B. McWhan , M. Marezio , J. P. Remeika , and P. D. Dernier , Phys. Rev. B 10 , 490 ( 1974 ). PLRBAQ 0556-2805 10.1103/PhysRevB.10.490 [56] 56a V. Eyert , R. Horny , K.-H. Höck , and S. Horn , J. Phys. Condens. Matter 12 , 4923 ( 2000 ); JCOMEL 0953-8984 10.1088/0953-8984/12/23/303 56b D. O. Scanlon , G. W. Watson , D. J. Payne , G. R. Atkinson , R. G. Egdell , and D. S. L. Law , J. Phys. Chem. C 114 , 4636 ( 2010 ). JPCCCK 1932-7447 10.1021/jp9093172 [57] 57 A. Magnéli and G. Andersson , Acta Chem. Scand. 9 , 1378 ( 1955 ). ACSAA4 0001-5393 10.3891/acta.chem.scand.09-1378 [58] 58 A. A. Bolzan , B. J. Kennedy , and C. J. Howard , Australian Journal of Chemistry 48 , 1473 ( 1995 ). AJCHAS 0004-9425 10.1071/CH9951473 [59] 59 G. Djéga-Mariadassou , M. Boudart , G. Bugli , and C. Sayag , Catal. Lett. 31 , 411 ( 1995 ). CALEER 1011-372X 10.1007/BF00808605 [60] 60 J. A. Drayton , D. D. Williams , R. M. Geisthardt , C. L. Cramer , J. D. Williams , and J. R. Sites , J. Vac. Sci. Technol. A 33 , 041201 ( 2015 ). JVTAD6 0734-2101 10.1116/1.4922576 [61] 61 Y. Li , Y. Fan , and Y. Chen , Catal. Lett. 82 , 111 ( 2002 ). CALEER 1011-372X 10.1023/A:1020508612112 [62] 62 A. R. Mouat , A. U. Mane , J. W. Elam , M. Delferro , T. J. Marks , and P. C. Stair , Chem. Mater. 28 , 1907 ( 2016 ). CMATEX 0897-4756 10.1021/acs.chemmater.6b00248 [63] 63 C. Sayag , G. Bugli , P. Havil , and G. Djéga-Mariadassou , J. Catal. 167 , 372 ( 1997 ). JCTLA5 0021-9517 10.1006/jcat.1997.1579 [64] 64 N. Charles , R. J. Saballos , and J. M. Rondinelli , Chem. Mater. 30 , 3528 ( 2018 ). CMATEX 0897-4756 10.1021/acs.chemmater.8b01336 [65] 65 E. E. Rodriguez , F. Poineau , A. Llobet , A. P. Sattelberger , J. Bhattacharjee , U. V. Waghmare , T. Hartmann , and A. K. Cheetham , J. Am. Chem. Soc. 129 , 10244 ( 2007 ). JACSAT 0002-7863 10.1021/ja0727363 [66] 66 F. J. Brink , R. L. Withers , and L. Norén , J. Solid State Chem. 166 , 73 ( 2002 ). JSSCBI 0022-4596 10.1006/jssc.2002.9562 [67] 67 H. He , H. Gao , W. Wu , S. Cao , J. Hong , D. Yu , G. Deng , Y. Gao , P. Zhang , H. Luo , and W. Ren , Phys. Rev. B 94 , 205127 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.94.205127 [68] 68 T. Yao , X. Zhang , Z. Sun , S. Liu , Y. Huang , Y. Xie , C. Wu , X. Yuan , W. Zhang , Z. Wu , G. Pan , F. Hu , L. Wu , Q. Liu , and S. Wei , Phys. Rev. Lett. 105 , 226405 ( 2010 ). PRLTAO 0031-9007 10.1103/PhysRevLett.105.226405 [69] 69 T. H. Kim , D. Puggioni , Y. Yuan , L. Xie , H. Zhou , N. Campbell , P. J. Ryan , Y. Choi , J.-W. Kim , J. R. Patzner , S. Ryu , J. P. Podkaminer , J. Irwin , Y. Ma , C. J. Fennie , M. S. Rzchowski , X. Q. Pan , V. Gopalan , J. M. Rondinelli , and C. B. Eom , Nature (London) 533 , 68 ( 2016 ). NATUAS 0028-0836 10.1038/nature17628 [70] 70 S. V. Ovsyannikov , M. Bykov , E. Bykova , D. P. Kozlenko , A. A. Tsirlin , A. E. Karkin , V. V. Shchennikov , S. E. Kichanov , H. Gou , A. M. Abakumov , R. Egoavil , J. Verbeeck , C. McCammon , V. Dyadkin , D. Chernyshov , S. van Smaalen , and L. S. Dubrovinsky , Nat. Chem. 8 , 501 ( 2016 ). NCAHBB 1755-4330 10.1038/nchem.2478 [71] 71 S. Kim , B. H. Kim , K. Kim , and B. I. Min , Phys. Rev. B 93 , 045106 ( 2016 ). PRBMDO 2469-9950 10.1103/PhysRevB.93.045106 [72] 72 M. Kaltak , M. Fernández-Serra , and M. S. Hybertsen , Phys. Rev. Mater. 1 , 075401 ( 2017 ). PRMHAR 2475-9953 10.1103/PhysRevMaterials.1.075401 [73] 73 J. Klarbring and S. I. Simak , Phys. Rev. B 97 , 024108 ( 2018 ). PRBMDO 2469-9950 10.1103/PhysRevB.97.024108 [74] 74 B. Khamari and B. R. K. Nanda , Mater. Res. Express 6 , 066309 ( 2019 ). 10.1088/2053-1591/ab0b13 [75] 75 B. Keimer and J. E. Moore , Nat. Phys. 13 , 1045 ( 2017 ). NPAHAX 1745-2473 10.1038/nphys4302 [76] 76 J. Towns , T. Cockerill , M. Dahan , I. Foster , K. Gaither , A. Grimshaw , V. Hazlewood , S. Lathrop , D. Lifka , G. D. Peterson , R. Roskies , J. R. Scott , and N. Wilkins-Diehr , Comput. Sci. Eng. 16 , 62 ( 2014 ). CSENFA 1521-9615 10.1109/MCSE.2014.80 Funding Information: N.J.S. was supported by the National Science Foundations (NSF) MRSEC program (DMR-1720319) at the Materials Research Center of Northwestern University. L.N.W. and J.M.R. were supported by NSF under DMR-1454688. The computational contributions of D.P. were supported by the Army Research Office through Grant No.W911NF-15-1-0017. Computations were performed using the QUEST HPC facility at Northwestern University and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF under ACI-1548562 N.J.S. and L.N.W. contributed equally to this work.
PY - 2019/12/3
Y1 - 2019/12/3
N2 - Using a first-principles approach, we design the heteroanionic oxynitride MoON to exhibit a first-order isosymmetric thermally activated Peierls-type metal-insulator transition (MIT). We identify a ground state insulating phase (α-MoON) with monoclinic Pc symmetry and a metastable high temperature metallic phase (β-MoON) of equivalent symmetry. We find that ordered fac-MoO3N3 octahedra with edge and corner connectivity stabilize the twisted Mo-Mo dimers present in the α phase, which activate the MIT through electron localization within the 4d a1g manifold. By analyzing the temperature dependence of the soft zone-boundary instability driving the MIT, we estimate an ordering temperature TMIT∼900 K. Our work shows that electronic transitions can be designed by exploiting multiple anions, and heteroanionic materials could offer new insights into the microscopic electron-lattice interactions governing unresolved transitions in homoanionic oxides.
AB - Using a first-principles approach, we design the heteroanionic oxynitride MoON to exhibit a first-order isosymmetric thermally activated Peierls-type metal-insulator transition (MIT). We identify a ground state insulating phase (α-MoON) with monoclinic Pc symmetry and a metastable high temperature metallic phase (β-MoON) of equivalent symmetry. We find that ordered fac-MoO3N3 octahedra with edge and corner connectivity stabilize the twisted Mo-Mo dimers present in the α phase, which activate the MIT through electron localization within the 4d a1g manifold. By analyzing the temperature dependence of the soft zone-boundary instability driving the MIT, we estimate an ordering temperature TMIT∼900 K. Our work shows that electronic transitions can be designed by exploiting multiple anions, and heteroanionic materials could offer new insights into the microscopic electron-lattice interactions governing unresolved transitions in homoanionic oxides.
UR - http://www.scopus.com/inward/record.url?scp=85076608576&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076608576&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.123.236402
DO - 10.1103/PhysRevLett.123.236402
M3 - Article
C2 - 31868440
AN - SCOPUS:85076608576
SN - 0031-9007
VL - 123
JO - Physical Review Letters
JF - Physical Review Letters
IS - 23
M1 - 236402
ER -