Abstract
Background: Design patterns, in the context of software development and ontologies, provide generalized approaches and guidance to solving commonly occurring problems, or addressing common situations typically informed by intuition, heuristics and experience. While the biomedical literature contains broad coverage of specific phenotype algorithm implementations, no work to date has attempted to generalize common approaches into design patterns, which may then be distributed to the informatics community to efficiently develop more accurate phenotype algorithms. Methods: Using phenotyping algorithms stored in the Phenotype KnowledgeBase (PheKB), we conducted an independent iterative review to identify recurrent elements within the algorithm definitions. We extracted and generalized recurrent elements in these algorithms into candidate patterns. The authors then assessed the candidate patterns for validity by group consensus, and annotated them with attributes. Results: A total of 24 electronic Medical Records and Genomics (eMERGE) phenotypes available in PheKB as of 1/25/2013 were downloaded and reviewed. From these, a total of 21 phenotyping patterns were identified, which are available as an online data supplement. Conclusions: Repeatable patterns within phenotyping algorithms exist, and when codified and cataloged may help to educate both experienced and novice algorithm developers. The dissemination and application of these patterns has the potential to decrease the time to develop algorithms, while improving portability and accuracy.
Original language | English (US) |
---|---|
Pages (from-to) | 280-286 |
Number of pages | 7 |
Journal | Journal of Biomedical Informatics |
Volume | 51 |
DOIs | |
State | Published - Oct 1 2014 |
Funding
JAP, JCD, JP, LVR and WKT received additional support from NIGMS grant R01GM105688-01. LVR and JBS received additional support from NCATS grant 8UL1TR000150-05. JCD received additional support from NLM grant R01LM010685. The eMERGE Network was initiated and funded by National Human Genome Research Institute through the following grants: U01HG006828 (Cincinnati Children’s Hospital Medical Center/Harvard); U01HG006830 (Children’s Hospital of Philadelphia); U01HG006389 (Essentia Institute of Rural Health); U01HG006382 (Geisinger Health System); U01HG006375 (Group Health Cooperative); U01HG006379 (Mayo Clinic); U01HG006380 (Mount Sinai School of Medicine); U01HG006388 (Northwestern University); U01HG006378 (Vanderbilt University); and U01HG006385 (Vanderbilt University serving as the Coordinating Center).
Keywords
- Algorithms
- Design patterns
- Electronic health record
- Phenotype
- Software design
ASJC Scopus subject areas
- Health Informatics
- Computer Science Applications