TY - JOUR
T1 - Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy
AU - Yang, Zhao
AU - Bowles, Neil E.
AU - Scherer, Steven E.
AU - Taylor, Michael D.
AU - Kearney, Debra L.
AU - Ge, Shuping
AU - Nadvoretskiy, Vyacheslav V.
AU - DeFreitas, Gilberto
AU - Carabello, Blasé
AU - Brandon, Lois I.
AU - Godsel, Lisa M.
AU - Green, Kathleen J.
AU - Saffitz, Jeffrey E.
AU - Li, Hua
AU - Danieli, Gian Antonio
AU - Calkins, Hugh
AU - Marcus, Frank
AU - Towbin, Jeffrey A.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/9
Y1 - 2006/9
N2 - Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is characterized by progressive degeneration of the right ventricular myocardium, ventricular arrhythmias, fibrous-fatty replacement, and increased risk of sudden death. Mutations in 6 genes, including 4 encoding desmosomal proteins (Junctional plakoglobin (JUP), Desmoplakin (DSP), Plakophilin 2, and Desmoglein 2), have been identified in patients with ARVD/C. Mutation analysis of 66 probands identified 4 variants in DSP; V30M, Q90R, W233X, and R2834H. To establish a cause and effect relationship between those DSP missense mutations and ARVD/C, we performed in vitro and in vivo analyses of the mutated proteins. Unlike wild-type (WT) DSP, the N-terminal mutants (V30M and Q90R) failed to localize to the cell membrane in desomosome-forming cell line and failed to bind to and coimmunoprecipitate JUP. Multiple attempts to generate N-terminal DSP (V30M and Q90R) cardiac-specific transgenes have failed: analysis of embryos revealed evidence of profound ventricular dilation, which likely resulted in embryonic lethality. We were able to develop transgenic (Tg) mice with cardiac-restricted overexpression of the C-terminal mutant (R2834H) or WT DSP. Whereas mice overexpressing WT DSP had no detectable histologic, morphological, or functional cardiac changes, the R2834H-Tg mice had increased cardiomyocyte apoptosis, cardiac fibrosis, and lipid accumulation, along with ventricular enlargement and cardiac dysfunction in both ventricles. These mice also displayed interruption of DSP-desmin interaction at intercalated discs (IDs) and marked ultra-structural changes of IDs. These data suggest DSP expression in cardiomyocytes is crucial for maintaining cardiac tissue integrity, and DSP abnormalities result in ARVD/C by cardiomyocyte death, changes in lipid metabolism, and defects in cardiac development.
AB - Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is characterized by progressive degeneration of the right ventricular myocardium, ventricular arrhythmias, fibrous-fatty replacement, and increased risk of sudden death. Mutations in 6 genes, including 4 encoding desmosomal proteins (Junctional plakoglobin (JUP), Desmoplakin (DSP), Plakophilin 2, and Desmoglein 2), have been identified in patients with ARVD/C. Mutation analysis of 66 probands identified 4 variants in DSP; V30M, Q90R, W233X, and R2834H. To establish a cause and effect relationship between those DSP missense mutations and ARVD/C, we performed in vitro and in vivo analyses of the mutated proteins. Unlike wild-type (WT) DSP, the N-terminal mutants (V30M and Q90R) failed to localize to the cell membrane in desomosome-forming cell line and failed to bind to and coimmunoprecipitate JUP. Multiple attempts to generate N-terminal DSP (V30M and Q90R) cardiac-specific transgenes have failed: analysis of embryos revealed evidence of profound ventricular dilation, which likely resulted in embryonic lethality. We were able to develop transgenic (Tg) mice with cardiac-restricted overexpression of the C-terminal mutant (R2834H) or WT DSP. Whereas mice overexpressing WT DSP had no detectable histologic, morphological, or functional cardiac changes, the R2834H-Tg mice had increased cardiomyocyte apoptosis, cardiac fibrosis, and lipid accumulation, along with ventricular enlargement and cardiac dysfunction in both ventricles. These mice also displayed interruption of DSP-desmin interaction at intercalated discs (IDs) and marked ultra-structural changes of IDs. These data suggest DSP expression in cardiomyocytes is crucial for maintaining cardiac tissue integrity, and DSP abnormalities result in ARVD/C by cardiomyocyte death, changes in lipid metabolism, and defects in cardiac development.
KW - Arrhythmogenic right ventricular dysplasia/cardiomyopathy
KW - Gene mutations
KW - Mechanical junctions
UR - http://www.scopus.com/inward/record.url?scp=33748741625&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748741625&partnerID=8YFLogxK
U2 - 10.1161/01.RES.0000241482.19382.c6
DO - 10.1161/01.RES.0000241482.19382.c6
M3 - Article
C2 - 16917092
AN - SCOPUS:33748741625
SN - 0009-7330
VL - 99
SP - 646
EP - 655
JO - Circulation research
JF - Circulation research
IS - 6
ER -