Detecting age-related macular degeneration (AMD) biomarker images using MFCC and texture features

Yiyang Wang*, Xufan Ma, Rob Weddell, Abum Okemgbo, David Rein, Amani A. Fawzi, Jacob Furst, Daniela Raicu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in older individuals. Clinically, ophthalmologists visually inspect optical coherence tomography (OCT) volumes to diagnose the stage of AMD based on well-known biomarkers. An early characteristic of AMD is drusen, which appears as yellowish deposits under the retina. AMD is mainly categorized into two types: dry AMD (non-neovascular) and wet AMD (neovascular). Given the large number of OCT images in an individual volume, an efficacious computer-aided detection system can reduce the workload for ophthalmologists by automatically detecting biomarkers in the relevant images. Because the shape of the RPE is critical in defining the pathological changes caused by wet and dry AMD, we propose a novel approach to describe the RPE shape using Mel Frequency Cepstral Coefficients (MFCC). Our previous work indicates that Haralick texture features have the ability to distinguish drusen from healthy tissue on color photography, therefore, we also investigated Haralick texture features extracted from the region between Inner Limiting Membrane (ILM) and Bruchs Membrane (BM) layers in this study. We achieved a mean accuracy, sensitivity with respect to AMD image and specificity with respect to healthy image of 89.68%, 89.26% and 90.12% on testing sets and 69.22%, 67.40%, and 75.56% on new patient validation sets, respectively. Our binary classification results indicate that MFCC are uniquely suited for producing generalizable results to automatically detect AMD biomarker images.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2020
Subtitle of host publicationComputer-Aided Diagnosis
EditorsHorst K. Hahn, Maciej A. Mazurowski
PublisherSPIE
ISBN (Electronic)9781510633957
DOIs
StatePublished - 2020
Externally publishedYes
EventMedical Imaging 2020: Computer-Aided Diagnosis - Houston, United States
Duration: Feb 16 2020Feb 19 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11314
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2020: Computer-Aided Diagnosis
Country/TerritoryUnited States
CityHouston
Period2/16/202/19/20

Keywords

  • age-related macular degeneration
  • biomarker images
  • computer-aided detection
  • mel-frequency cepstral coecients
  • texture features

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Detecting age-related macular degeneration (AMD) biomarker images using MFCC and texture features'. Together they form a unique fingerprint.

Cite this