Detecting and aligning faces by image retrieval

Xiaohui Shen, Zhe Lin, Jonathan Brandt, Ying Wu

Research output: Contribution to journalConference articlepeer-review

130 Scopus citations

Abstract

Detecting faces in uncontrolled environments continues to be a challenge to traditional face detection methods due to the large variation in facial appearances, as well as occlusion and clutter. In order to overcome these challenges, we present a novel and robust exemplar-based face detector that integrates image retrieval and discriminative learning. A large database of faces with bounding rectangles and facial landmark locations is collected, and simple discriminative classifiers are learned from each of them. A voting-based method is then proposed to let these classifiers cast votes on the test image through an efficient image retrieval technique. As a result, faces can be very efficiently detected by selecting the modes from the voting maps, without resorting to exhaustive sliding window-style scanning. Moreover, due to the exemplar-based framework, our approach can detect faces under challenging conditions without explicitly modeling their variations. Evaluation on two public benchmark datasets shows that our new face detection approach is accurate and efficient, and achieves the state-of-the-art performance. We further propose to use image retrieval for face validation (in order to remove false positives) and for face alignment/landmark localization. The same methodology can also be easily generalized to other face-related tasks, such as attribute recognition, as well as general object detection.

Original languageEnglish (US)
Article number6619288
Pages (from-to)3460-3467
Number of pages8
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
StatePublished - 2013
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, United States
Duration: Jun 23 2013Jun 28 2013

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Detecting and aligning faces by image retrieval'. Together they form a unique fingerprint.

Cite this