TY - GEN
T1 - Detecting Campaign Promoters on Twitter Using Markov Random Fields
AU - Li, Huayi
AU - Mukherjee, Arjun
AU - Liu, Bing
AU - Kornfield, Rachel
AU - Emery, Sherry
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - As social media is becoming an increasingly important source of public information, companies, organizations and individuals are actively using social media platforms to promote their products, services, ideas and ideologies. Unlike promotional campaigns on TV or other traditional mass media platforms, campaigns on social media often appear in stealth modes. Campaign promoters often try to influence people's behaviors/opinions/decisions in a latent manner such that the readers are not aware that the messages they see are strategic campaign posts aimed at persuading them to buy target products/services. Readers take such campaign posts as just organic posts from the general public. It is thus important to discover such campaigns, their promoter accounts and how the campaigns are organized and executed as it can uncover the dynamics of Internet marketing. This discovery is clearly useful for competitors and also the general public. However, so far little work has been done to solve this problem. In this paper, we study this important problem in the context of the Twitter platform. Given a set of tweets streamed from Twitter based on a set of keywords representing a particular topic, the proposed technique aims to identify user accounts that are involved in promotion. We formulate the problem as a relational classification problem and solve it using typed Markov Random Fields (T-MRF), which is proposed as a generalization of the classic Markov Random Fields. Our experiments are carried out using three real-life datasets from the health science domain related to smoking. Such campaigns are interesting to health scientists, government health agencies and related businesses for obvious reasons. Our results show that the proposed method is highly effective.
AB - As social media is becoming an increasingly important source of public information, companies, organizations and individuals are actively using social media platforms to promote their products, services, ideas and ideologies. Unlike promotional campaigns on TV or other traditional mass media platforms, campaigns on social media often appear in stealth modes. Campaign promoters often try to influence people's behaviors/opinions/decisions in a latent manner such that the readers are not aware that the messages they see are strategic campaign posts aimed at persuading them to buy target products/services. Readers take such campaign posts as just organic posts from the general public. It is thus important to discover such campaigns, their promoter accounts and how the campaigns are organized and executed as it can uncover the dynamics of Internet marketing. This discovery is clearly useful for competitors and also the general public. However, so far little work has been done to solve this problem. In this paper, we study this important problem in the context of the Twitter platform. Given a set of tweets streamed from Twitter based on a set of keywords representing a particular topic, the proposed technique aims to identify user accounts that are involved in promotion. We formulate the problem as a relational classification problem and solve it using typed Markov Random Fields (T-MRF), which is proposed as a generalization of the classic Markov Random Fields. Our experiments are carried out using three real-life datasets from the health science domain related to smoking. Such campaigns are interesting to health scientists, government health agencies and related businesses for obvious reasons. Our results show that the proposed method is highly effective.
KW - Campaign Promoter
KW - Markov Random Fields
UR - http://www.scopus.com/inward/record.url?scp=84936947672&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936947672&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2014.59
DO - 10.1109/ICDM.2014.59
M3 - Conference contribution
AN - SCOPUS:84936947672
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 290
EP - 299
BT - Proceedings - 14th IEEE International Conference on Data Mining, ICDM 2014
A2 - Kumar, Ravi
A2 - Toivonen, Hannu
A2 - Pei, Jian
A2 - Zhexue Huang, Joshua
A2 - Wu, Xindong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 14th IEEE International Conference on Data Mining, ICDM 2014
Y2 - 14 December 2014 through 17 December 2014
ER -