Developing a 6-DOF robot to investigate multi-axis ACL injuries under valgus loading coupled with tibia internal rotation

Yupeng Ren*, Benjamin J. Jacobs, Gordon W. Nuber, Jason L. Koh, Li Qun Zhang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Anterior cruciate ligament (ACL) injuries have become more common in recent years as more young people participate in risky sporting activities [1]. Most ACL injuries occur as a result of noncontact mechanisms. Previous in vitro studies of ACL strain have found significant increases in ACL strain primarily with anterior directed force on the tibia relative to the femur and with internal rotation and often with valgus torque [2,3]. However, there remains significant controversy over the mechanisms of ACL failure and the forces on the knee that lead to injury. Some studies have also shown that isolated valgus loading may not load the ACL strongly. The goal of this study was to investigate the mechanism underlying valgus-related ACL injuries. An improved understanding of ACL failure may lead to improved ACL injury prevention programs. A novel 6 degrees of freedom (DOF) knee driving robot was developed in this study with a unique multi-axis simultaneous torque/position control. It was found that pure valgus torque caused a torque that internally rotated the tibia and thus increased ACL strain markedly, which may be an important mechanism underlying the rather common seemingly valgus-related ACL injuries.

Original languageEnglish (US)
Title of host publication2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Pages3942-3945
Number of pages4
DOIs
StatePublished - Dec 1 2010
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: Aug 31 2010Sep 4 2010

Publication series

Name2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

Other

Other2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
CountryArgentina
CityBuenos Aires
Period8/31/109/4/10

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Developing a 6-DOF robot to investigate multi-axis ACL injuries under valgus loading coupled with tibia internal rotation'. Together they form a unique fingerprint.

Cite this