Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study

Derek B. Archer, Justin T. Bricker, Winston T. Chu, Roxana G. Burciu, Johanna L. McCracken, Song Lai, Stephen A. Coombes, Ruogu Fang, Angelos Barmpoutis, Daniel M. Corcos, Ajay S. Kurani, Trina Mitchell, Mieniecia L. Black, Ellen Herschel, Tanya Simuni, Todd B. Parrish, Cynthia Comella, Tao Xie, Klaus Seppi, Nicolaas I. BohnenMartijn LTM Müller, Roger L. Albin, Florian Krismer, Guangwei Du, Mechelle M. Lewis, Xuemei Huang, Hong Li, Ofer Pasternak, Nikolaus R. McFarland, Michael S. Okun, David E. Vaillancourt*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Fingerprint

Dive into the research topics of 'Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study'. Together they form a unique fingerprint.

Medicine & Life Sciences

Business & Economics