TY - JOUR
T1 - Development of wide-band middle ear transmission in the Mongolian gerbil
AU - Overstreet, Edward H.
AU - Ruggero, Mario A.
N1 - Copyright:
Copyright 2016 Elsevier B.V., All rights reserved.
PY - 2002
Y1 - 2002
N2 - Stapes vibrations were measured in deeply anesthetized adult and neonatal (ages: 14 to 20 days) Mongolian gerbils. In adult gerbils, the velocity magnitude of stapes responses to tones was approximately constant over the entire frequency range of measurements, 1 to 40 kHz. Response phases referred to pressure near the tympanic membrane varied approximately linearly as a function of increasing stimulus frequency, with a slope corresponding to a group delay of 30 μs. In neonatal gerbils, the sensitivity of stapes responses to tones was lower than in adults, especially at mid-frequencies (e.g., by about 15 dB at 10-20 kHz in gerbils aged 14 days). The input impedance of the adult gerbil cochlea, calculated from stapes vibrations and published measurements of pressure in scala vestibuli near the oval window [E. Olson, J. Acoust. Soc. Am. 103, 3445-3463 (1998)], is principally, dissipative at frequencies lower than 10 kHz. Conclusions: (a) middle-ear vibrations in adult gerbils do not limit the input to the cochlea up to at least 40 kHz, i.e., within 0.5 oct of the high-frequency cutoff of the behavioral audiogram; and (b) the results in both adult and neonatal gerbils are inconsistent with the hypothesis that mass reactance controls high-frequency ossicular vibrations and support the idea that the middle ear functions as a transmission line.
AB - Stapes vibrations were measured in deeply anesthetized adult and neonatal (ages: 14 to 20 days) Mongolian gerbils. In adult gerbils, the velocity magnitude of stapes responses to tones was approximately constant over the entire frequency range of measurements, 1 to 40 kHz. Response phases referred to pressure near the tympanic membrane varied approximately linearly as a function of increasing stimulus frequency, with a slope corresponding to a group delay of 30 μs. In neonatal gerbils, the sensitivity of stapes responses to tones was lower than in adults, especially at mid-frequencies (e.g., by about 15 dB at 10-20 kHz in gerbils aged 14 days). The input impedance of the adult gerbil cochlea, calculated from stapes vibrations and published measurements of pressure in scala vestibuli near the oval window [E. Olson, J. Acoust. Soc. Am. 103, 3445-3463 (1998)], is principally, dissipative at frequencies lower than 10 kHz. Conclusions: (a) middle-ear vibrations in adult gerbils do not limit the input to the cochlea up to at least 40 kHz, i.e., within 0.5 oct of the high-frequency cutoff of the behavioral audiogram; and (b) the results in both adult and neonatal gerbils are inconsistent with the hypothesis that mass reactance controls high-frequency ossicular vibrations and support the idea that the middle ear functions as a transmission line.
UR - http://www.scopus.com/inward/record.url?scp=0036146712&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036146712&partnerID=8YFLogxK
U2 - 10.1121/1.1420382
DO - 10.1121/1.1420382
M3 - Article
C2 - 11831800
AN - SCOPUS:0036146712
SN - 0001-4966
VL - 111
SP - 261
EP - 270
JO - journal of the Acoustical Society of America
JF - journal of the Acoustical Society of America
IS - 1
ER -