Device Configuration and Patient's Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants during MRI: An Experimental Study at 1.5T and 3T

Bhumi Bhusal, Bach T. Nguyen, Jasmine Vu, Behzad Elahi, Joshua Rosenow, Mark J. Nolt, Julie Pilitsis, Marisa Dimarzio, Laleh Golestanirad

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Patients with deep brain stimulation (DBS) devices have limited access to magnetic resonance imaging (MRI) due to safety concerns associated with RF heating generated around the implant. The problem of predicting RF heating of conductive leads is complex with a large parameter space and several interplaying factors. Recently however, off-label use of MRI in patients with DBS devices has been reported based on limited safety assessments, raising the concern that potentially dangerous scenarios may have been overlooked. In this work, we present results of a systematic assessment of RF heating of a commercial DBS device during MRI at 1.5T and 3T, taking into account the effect of device configuration, imaging landmark, and patient's body composition. Ninety-six (96) RF heating measurements were performed using anthropomorphic phantoms implanted with a full DBS system. We evaluated eight clinically relevant device configurations, implanted in phantoms with different material compositions, and imaged at three different landmarks (head, shoulder, and lower chest) in 1.5 T and 3T scanners. We observed a substantial fluctuation in the RF heating depending on phantom's composition and device configuration. RF heating in the brain-mimicking gel varied from 0.1°C to 12°C during 1.5 T MRI and from <0.1°C to 4.5°C during 3T MRI. We also observed that certain device configurations consistently reduced RF heating across different phantom compositions, imaging landmarks, and MRI transmit frequencies.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5192-5197
Number of pages6
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Device Configuration and Patient's Body Composition Significantly Affect RF Heating of Deep Brain Stimulation Implants during MRI: An Experimental Study at 1.5T and 3T'. Together they form a unique fingerprint.

Cite this