TY - JOUR
T1 - Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus
AU - Keppler, Oliver T.
AU - Peter, Marcus E.
AU - Hinderlich, Stephan
AU - Moldenhauer, Gerhard
AU - Stehling, Peer
AU - Schmitz, Ingo
AU - Schwartz-Albiez, Reinhard
AU - Reutter, Werner
AU - Pawlita, Michael
N1 - Funding Information:
We are grateful to K.Hexel for FACSort analyses. We thank G.Haun for initial experiments and helpful discussions and M.Oppenländer for expert technical assistance. We thank T.A.Scott for improving the English of the manuscript. This work was supported in part by grants from the Bundesministerium für Bildung und Forschung, Bonn, Germany (to W.R. and M.P.) and from the Wilhelm-Sander Stiftung (to M.P).
PY - 1999/6
Y1 - 1999/6
N2 - Sialic acid, as a terminal saccharide residue on cell surface glycoconjugates, plays an important role in a variety of biological processes. In this study, we investigated subclones of the human B lymphoma cell line BJA-B for differences in the glycosylation of cell surface glycoconjugates, and studied the functional implications of such differences. With respect to the expression level of most of the tested B cell-associated antigens, as well as the presence of penultimate saccharide moieties on oligosaccharide chains, subclones were phenotypically indistinguishable. Marked differences among subclones, however, were found in the overall level of glycoconjugate sialylation, involving both α-2,6 and α-2,3-linked sialic acid residues. Accordingly, subclones were classified as highly- (group I) or hyposialylated (group II). The function of two sialic acid-dependent receptor-mediated processes is correlated with the sialylation status of BJA-B subclones. Susceptibility to acid binding of the B lymphotropic papovavirus (LPV) was dependent on a high sialylation status of host cells, suggesting that differential sialylation in BJA-B cells can modulate LPV infection via its α-2,6-sialylated glycoprotein receptor. CD95-mediated apoptosis, induced by either the human CD95 ligand or a cytotoxic anti-CD95 monoclonal antibody, was drastically enhanced in hyposialylated group II cells. An increase in endogenous sialylation may be one anti-apoptotic mechanism that converts tumor cells to a more malignant phenotype. To our knowledge, this is the first report demonstrating that differential sialylation in a clonal cell line may regulate the function of virus and signal-transducing receptors.
AB - Sialic acid, as a terminal saccharide residue on cell surface glycoconjugates, plays an important role in a variety of biological processes. In this study, we investigated subclones of the human B lymphoma cell line BJA-B for differences in the glycosylation of cell surface glycoconjugates, and studied the functional implications of such differences. With respect to the expression level of most of the tested B cell-associated antigens, as well as the presence of penultimate saccharide moieties on oligosaccharide chains, subclones were phenotypically indistinguishable. Marked differences among subclones, however, were found in the overall level of glycoconjugate sialylation, involving both α-2,6 and α-2,3-linked sialic acid residues. Accordingly, subclones were classified as highly- (group I) or hyposialylated (group II). The function of two sialic acid-dependent receptor-mediated processes is correlated with the sialylation status of BJA-B subclones. Susceptibility to acid binding of the B lymphotropic papovavirus (LPV) was dependent on a high sialylation status of host cells, suggesting that differential sialylation in BJA-B cells can modulate LPV infection via its α-2,6-sialylated glycoprotein receptor. CD95-mediated apoptosis, induced by either the human CD95 ligand or a cytotoxic anti-CD95 monoclonal antibody, was drastically enhanced in hyposialylated group II cells. An increase in endogenous sialylation may be one anti-apoptotic mechanism that converts tumor cells to a more malignant phenotype. To our knowledge, this is the first report demonstrating that differential sialylation in a clonal cell line may regulate the function of virus and signal-transducing receptors.
KW - Apoptosis
KW - B lymphotropic papovavirus (LPV)
KW - Glycosylation
KW - Receptor
KW - Sialylation
UR - http://www.scopus.com/inward/record.url?scp=0033046601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033046601&partnerID=8YFLogxK
U2 - 10.1093/glycob/9.6.557
DO - 10.1093/glycob/9.6.557
M3 - Article
C2 - 10336988
AN - SCOPUS:0033046601
SN - 0959-6658
VL - 9
SP - 557
EP - 569
JO - Glycobiology
JF - Glycobiology
IS - 6
ER -