Differential tracking based on Spatial-Appearance Model (SAM)

Ting Yu*, Ying Wu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32 Scopus citations

Abstract

A fundamental issue in differential motion analysis is the compromise between the flexibility of the matching criterion for image regions and the ability of recovering the motion. Localized matching criteria, e.g., pixel-based SSD, may enable the recovery of all motion parameters, but it does not tolerate much appearance changes. On the other hand, global criteria, e.g., matching histograms, can accommodate dramatic appearance changes, but may be blind to some motion parameters, e.g., scaling and rotation. This paper presents a novel differential approach that integrates the advantages of both in a principled way based on a spatial-appearance model (SAM) that combines local appearances variations and global spatial structures. This model can capture a large variety of appearance variations that are attributed to the local non-rigidity. At the same time, this model enables efficient recovery of all motion parameters. A maximum likelihood matching criterion is defined and rigorous analytical results are obtained that lead to a closed form solution to motion tracking. Very encouraging results demonstrate the effectiveness and efficiency of the proposed method for tracking non-rigid objects that exhibit dramatic appearance deformations, large object scale changes and partial, occlusions.

Original languageEnglish (US)
Title of host publicationProceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Pages720-727
Number of pages8
DOIs
StatePublished - 2006
Event2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006 - New York, NY, United States
Duration: Jun 17 2006Jun 22 2006

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume1
ISSN (Print)1063-6919

Other

Other2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
CountryUnited States
CityNew York, NY
Period6/17/066/22/06

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint Dive into the research topics of 'Differential tracking based on Spatial-Appearance Model (SAM)'. Together they form a unique fingerprint.

Cite this