Digestion of whole mouse eyes for multi-parameter flow cytometric analysis of mononuclear phagocytes

Steven Droho, Carla M. Cuda, Jeremy A. Lavine*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The innate immune system plays important roles in ocular pathophysiology including uveitis, diabetic retinopathy, and age-related macular degeneration. Innate immune cells, specifically mononuclear phagocytes, express overlapping cell surface markers, which makes identifying these populations a challenge. Multi-parameter flow cytometry allows for the simultaneous, quantitative analysis of multiple cell surface markers in order to differentiate monocytes, macrophages, microglia, and dendritic cells in mouse eyes. This protocol describes the enucleation of whole mouse eyes, ocular dissection, digestion into a single cell suspension, and staining of the single cell suspension for myeloid cell markers. Additionally, we explain the proper methods for determining voltages using single color controls and for delineating positive gates using fluorescence minus one controls. The major limitation of multi-parameter flow cytometry is the absence of tissue architecture. This limitation can be overcome by multi-parameter flow cytometry of individual ocular compartments or complimentary immunofluorescence staining. However, immunofluorescence is limited by its lack of quantitative analysis and reduced number of fluorophores on most microscopes. We describe the use of multi-parametric flow cytometry to provide highly quantitative analysis of mononuclear phagocytes in laser-induced choroidal neovascularization. Additionally, multi-parameter flow cytometry can be used for the identification of macrophage subsets, fate mapping, and cell sorting for transcriptomic or proteomic studies.

Original languageEnglish (US)
Article numbere61348
Pages (from-to)1-20
Number of pages20
JournalJournal of Visualized Experiments
Volume2020
Issue number160
DOIs
StatePublished - Jun 2020

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint

Dive into the research topics of 'Digestion of whole mouse eyes for multi-parameter flow cytometric analysis of mononuclear phagocytes'. Together they form a unique fingerprint.

Cite this