TY - JOUR
T1 - Digestion of whole mouse eyes for multi-parameter flow cytometric analysis of mononuclear phagocytes
AU - Droho, Steven
AU - Cuda, Carla M.
AU - Lavine, Jeremy A.
N1 - Funding Information:
JAL was supported by NIH grant K08EY030923; CMC was supported by a K01 grant (5K01AR060169) from the NIH National Institute of Arthritis and Musculoskeletal Diseases and a Novel Research Grant (637405) from the Lupus Research Alliance.
Publisher Copyright:
© 2020 JoVE Journal of Visualized Experiments.
PY - 2020/6
Y1 - 2020/6
N2 - The innate immune system plays important roles in ocular pathophysiology including uveitis, diabetic retinopathy, and age-related macular degeneration. Innate immune cells, specifically mononuclear phagocytes, express overlapping cell surface markers, which makes identifying these populations a challenge. Multi-parameter flow cytometry allows for the simultaneous, quantitative analysis of multiple cell surface markers in order to differentiate monocytes, macrophages, microglia, and dendritic cells in mouse eyes. This protocol describes the enucleation of whole mouse eyes, ocular dissection, digestion into a single cell suspension, and staining of the single cell suspension for myeloid cell markers. Additionally, we explain the proper methods for determining voltages using single color controls and for delineating positive gates using fluorescence minus one controls. The major limitation of multi-parameter flow cytometry is the absence of tissue architecture. This limitation can be overcome by multi-parameter flow cytometry of individual ocular compartments or complimentary immunofluorescence staining. However, immunofluorescence is limited by its lack of quantitative analysis and reduced number of fluorophores on most microscopes. We describe the use of multi-parametric flow cytometry to provide highly quantitative analysis of mononuclear phagocytes in laser-induced choroidal neovascularization. Additionally, multi-parameter flow cytometry can be used for the identification of macrophage subsets, fate mapping, and cell sorting for transcriptomic or proteomic studies.
AB - The innate immune system plays important roles in ocular pathophysiology including uveitis, diabetic retinopathy, and age-related macular degeneration. Innate immune cells, specifically mononuclear phagocytes, express overlapping cell surface markers, which makes identifying these populations a challenge. Multi-parameter flow cytometry allows for the simultaneous, quantitative analysis of multiple cell surface markers in order to differentiate monocytes, macrophages, microglia, and dendritic cells in mouse eyes. This protocol describes the enucleation of whole mouse eyes, ocular dissection, digestion into a single cell suspension, and staining of the single cell suspension for myeloid cell markers. Additionally, we explain the proper methods for determining voltages using single color controls and for delineating positive gates using fluorescence minus one controls. The major limitation of multi-parameter flow cytometry is the absence of tissue architecture. This limitation can be overcome by multi-parameter flow cytometry of individual ocular compartments or complimentary immunofluorescence staining. However, immunofluorescence is limited by its lack of quantitative analysis and reduced number of fluorophores on most microscopes. We describe the use of multi-parametric flow cytometry to provide highly quantitative analysis of mononuclear phagocytes in laser-induced choroidal neovascularization. Additionally, multi-parameter flow cytometry can be used for the identification of macrophage subsets, fate mapping, and cell sorting for transcriptomic or proteomic studies.
UR - http://www.scopus.com/inward/record.url?scp=85088208253&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088208253&partnerID=8YFLogxK
U2 - 10.3791/61348
DO - 10.3791/61348
M3 - Article
C2 - 32628177
AN - SCOPUS:85088208253
SN - 1940-087X
VL - 2020
SP - 1
EP - 20
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 160
M1 - e61348
ER -