Digital compatible synthesis, placement and implementation of mixed-signal time-domain computing

Zhengyu Chen, Hai Zhou, Jie Gu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations


Mixed-signal time-domain computing (TC) has recently drawn significant attention due to its high efficiency in applications such as machine learning accelerators. However, due to the nature of analog and mixed-signal design, there is a lack of a systematic flow of synthesis and place & route for time-domain circuits. This paper proposed a comprehensive design flow for TC. In the front-end, a variation-aware digital compatible synthesis flow is proposed. In the back-end, a placement technique using graph-based optimization engine is proposed to deal with the especially stringent matching requirement in TC. Simulation results show significant improvement over the prior analog placement methods. A 55nm test chip is used to demonstrate that the proposed design flow can meet the stringent timing matching target for TC with significant performance boost over conventional digital design.

Original languageEnglish (US)
Title of host publicationProceedings of the 56th Annual Design Automation Conference 2019, DAC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781450367257
StatePublished - Jun 2 2019
Event56th Annual Design Automation Conference, DAC 2019 - Las Vegas, United States
Duration: Jun 2 2019Jun 6 2019

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X


Conference56th Annual Design Automation Conference, DAC 2019
Country/TerritoryUnited States
CityLas Vegas

ASJC Scopus subject areas

  • Computer Science Applications
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Modeling and Simulation


Dive into the research topics of 'Digital compatible synthesis, placement and implementation of mixed-signal time-domain computing'. Together they form a unique fingerprint.

Cite this