DigitalCrust - a 4D data system of material properties for transforming research on crustal fluid flow

Y. Fan*, S. Richard, R. S. Bristol, S. E. Peters, S. E. Ingebritsen, N. Moosdorf, A. Packman, T. Gleeson, I. Zaslavsky, S. Peckham, L. Murdoch, M. Fienen, M. Cardiff, D. Tarboton, N. Jones, R. Hooper, J. Arrigo, D. Gochis, J. Olson, D. Wolock

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle-ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.

Original languageEnglish (US)
Pages (from-to)372-379
Number of pages8
Issue number1-2
StatePublished - Feb 1 2015


  • Data integration
  • Deep crustal dynamics
  • Earth system models
  • Groundwater
  • Groundwater-surface water interaction
  • Permeability

ASJC Scopus subject areas

  • General Earth and Planetary Sciences


Dive into the research topics of 'DigitalCrust - a 4D data system of material properties for transforming research on crustal fluid flow'. Together they form a unique fingerprint.

Cite this