Abstract
The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A-histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP-C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP.
Original language | English (US) |
---|---|
Pages (from-to) | 2113-2124 |
Number of pages | 12 |
Journal | EMBO Journal |
Volume | 32 |
Issue number | 15 |
DOIs | |
State | Published - Jul 31 2013 |
Keywords
- CENP-A
- centromere
- chromatin
- mitosis
- nucleosome
ASJC Scopus subject areas
- General Neuroscience
- Molecular Biology
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology