"Dip-pen" Nanolithography on semiconductor surfaces

A. Ivanisevic, C. A. Mirkin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

184 Scopus citations

Abstract

Dip-Pen Nanolithography (DPN) uses an AFM tip to deposit organic molecules through a meniscus onto an underlying substrate under ambient conditions. Thus far, the methodology has been developed exclusively for gold using alkyl or aryl thiols as inks. This study describes the first application of DPN to write organic patterns with sub-100 nm dimensions directly onto two different semiconductor surfaces: silicon and gallium arsenide. Using hexamethyldisilazane (HMDS) as the ink in the DPN procedure, we were able to utilize lateral force microscopy (LFM) images to differentiate between oxidized semiconductor surfaces and patterned areas with deposited monolayers of HMDS. The choice of the silazane ink is a critical component of the process since adsorbates such as trichlorosilanes are incompatible with the water meniscus and polymerize during ink deposition. This work provides insight into additional factors, such as temperature and adsorbate reactivity, that control the rate of the DPN process and paves the way for researchers to interface organic and biological structures generated via DPN with electronically important semiconductor substrates.

Original languageEnglish (US)
Pages (from-to)7887-7889
Number of pages3
JournalJournal of the American Chemical Society
Volume123
Issue number32
DOIs
StatePublished - 2001

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of '"Dip-pen" Nanolithography on semiconductor surfaces'. Together they form a unique fingerprint.

Cite this