Dipole time correlation functions of the Stockmayer fluid in the microcanonical and canonical ensembles

Vilia Ann Payne, Maria Forsyth, Jiri Kolafa, Mark A. Ratner*, Simon W. De Leeuw

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Computer simulations of Stockmayer fluids were performed to generate dipole time correlation functions (TCF) at three temperatures and three dipole moments in both the microcanonical and canonical ensembles. The effect of Nosé constant-temperature dynamics on time-dependent quantities is discussed, and empirical results are given to show that the choice of thermal inertia parameter influences the speed with which a system moves through its phase space. The time correlation functions from the simulations were analyzed in terms of current theories for dipolar systems. A functional form is proposed to cover both the long-time and short-time behavior of the time correlation functions of dipoles. The relationship between this functional form and the dielectric function of the Stockmayer system is also discussed.

Original languageEnglish (US)
Pages (from-to)10478-10485
Number of pages8
JournalJournal of physical chemistry
Volume97
Issue number40
DOIs
StatePublished - 1993

ASJC Scopus subject areas

  • Engineering(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Dipole time correlation functions of the Stockmayer fluid in the microcanonical and canonical ensembles'. Together they form a unique fingerprint.

Cite this