Direct detection of RDX vapor using a conjugated polymer network

Deepti Gopalakrishnan, William R. Dichtel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) is a principal component of plastic explosives used in acts of terrorism and within improvised explosive devices, among others. Approaches to detect RDX compatible with remote, "stand-off" sampling that do not require preconcentration strategies, such as the swabs commonly employed in airports, will benefit military and civilian security. Such detection remains a significant challenge because RDX is 103 less volatile than 1,3,5-trinitrotoluene (TNT), corresponding to a parts-per-trillion vapor pressure under ambient conditions. Therefore, while fluorescence quenching of conjugated polymers is sufficiently sensitive to detect TNT vapors, RDX vapor detection is undemonstrated. Here we report a cross-linked phenylene vinylene polymer network whose fluorescence is quenched by trace amounts of RDX introduced from solution or the vapor phase. Fluorescence quenching is reduced, but remains significant, when partially degraded RDX is employed, suggesting that the polymer responds to RDX itself. The polymer network also responds to TNT and PETN similarly introduced from solution or the vapor phase. Pure solvents, volatile amines, and the outgassed vapors from lipstick or sunscreen do not quench polymer fluorescence. The established success of TNT sensors based on fluorescence quenching makes this a material of interest for real-world explosive sensors and will motivate further interest in cross-linked polymers and framework materials for sensing applications.

Original languageEnglish (US)
Pages (from-to)8357-8362
Number of pages6
JournalJournal of the American Chemical Society
Volume135
Issue number22
DOIs
StatePublished - Jun 5 2013

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Direct detection of RDX vapor using a conjugated polymer network'. Together they form a unique fingerprint.

Cite this