TY - JOUR
T1 - Direct probes of 4 nm diameter gold nanoparticles interacting with supported lipid bilayers
AU - Troiano, Julianne M.
AU - Olenick, Laura L.
AU - Kuech, Thomas R.
AU - Melby, Eric S.
AU - Hu, Dehong
AU - Lohse, Samuel E.
AU - Mensch, Arielle C.
AU - Dogangun, Merve
AU - Vartanian, Ariane M.
AU - Torelli, Marco D.
AU - Ehimiaghe, Eseohi
AU - Walter, Stephanie R.
AU - Fu, Li
AU - Anderton, Christopher R.
AU - Zhu, Zihua
AU - Wang, Hongfei
AU - Orr, Galya
AU - Murphy, Catherine J.
AU - Hamers, Robert J.
AU - Pedersen, Joel A.
AU - Geiger, Franz M.
N1 - Publisher Copyright:
© 2014 American Chemical Society.
PY - 2015/1/8
Y1 - 2015/1/8
N2 - This work presents molecular-level investigations of how well-characterized silica-supported phospholipid bilayers formed from either pure DOPC or a 9:1 mixture of DOPC:DOTAP interact with positively and negatively charged 4 nm gold metal nanoparticles at pH 7.4 and NaCl concentrations ranging from 0.001 to 0.1 M. Second harmonic generation (SHG) charge screening measurements indicate the supported bilayers carry a negative interfacial potential. Resonantly enhanced SHG measurements probing electronic transitions within the gold core of the nanoparticles show the particles interact irreversibly with the supported bilayers at a range of concentrations. At 0.1 M NaCl, surface coverages for the particles functionalized with the negatively charged ligand mercaptopropionic acid (MPA) or wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) are estimated from a joint analysis of QCM-D, XPS, AFM, and ToF-SIMS to be roughly 1 × 107 and 1 × 1011 particles cm-2, respectively. Results from complementary SHG charge screening experiments point to the possibility that the surface coverage of the MPA-coated particles is more limited by interparticle Coulomb repulsion due to the charges within their hydrodynamic volumes than with the PAH-wrapped particles. Yet, SHG adsorption isotherms indicate that the interaction strength per particle is independent of ionic strength and particle coating, highlighting the importance of multivalent interactions. 1H NMR spectra of the lipids within vesicles suspended in solution show little change upon interaction with either particle type but indicate loosening of the gold-bound PAH polymer wrapping upon attachment to the vesicles. The thermodynamic, spectroscopic, and electrostatic data presented here may serve to benchmark experimental and computational studies of nanoparticle attachment processes at the nano-bio interface.
AB - This work presents molecular-level investigations of how well-characterized silica-supported phospholipid bilayers formed from either pure DOPC or a 9:1 mixture of DOPC:DOTAP interact with positively and negatively charged 4 nm gold metal nanoparticles at pH 7.4 and NaCl concentrations ranging from 0.001 to 0.1 M. Second harmonic generation (SHG) charge screening measurements indicate the supported bilayers carry a negative interfacial potential. Resonantly enhanced SHG measurements probing electronic transitions within the gold core of the nanoparticles show the particles interact irreversibly with the supported bilayers at a range of concentrations. At 0.1 M NaCl, surface coverages for the particles functionalized with the negatively charged ligand mercaptopropionic acid (MPA) or wrapped in the cationic polyelectrolyte poly(allylamine) hydrochloride (PAH) are estimated from a joint analysis of QCM-D, XPS, AFM, and ToF-SIMS to be roughly 1 × 107 and 1 × 1011 particles cm-2, respectively. Results from complementary SHG charge screening experiments point to the possibility that the surface coverage of the MPA-coated particles is more limited by interparticle Coulomb repulsion due to the charges within their hydrodynamic volumes than with the PAH-wrapped particles. Yet, SHG adsorption isotherms indicate that the interaction strength per particle is independent of ionic strength and particle coating, highlighting the importance of multivalent interactions. 1H NMR spectra of the lipids within vesicles suspended in solution show little change upon interaction with either particle type but indicate loosening of the gold-bound PAH polymer wrapping upon attachment to the vesicles. The thermodynamic, spectroscopic, and electrostatic data presented here may serve to benchmark experimental and computational studies of nanoparticle attachment processes at the nano-bio interface.
UR - http://www.scopus.com/inward/record.url?scp=84920675215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920675215&partnerID=8YFLogxK
U2 - 10.1021/jp512107z
DO - 10.1021/jp512107z
M3 - Article
AN - SCOPUS:84920675215
SN - 1932-7447
VL - 119
SP - 534
EP - 546
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 1
ER -