Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State

Siva Krishna Mohan Nalluri, Jiawang Zhou, Tao Cheng, Zhichang Liu, Minh T. Nguyen, Tianyang Chen, Hasmukh A. Patel, Matthew D. Krzyaniak, William A. Goddard, Michael R. Wasielewski*, J. Fraser Stoddart

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

93 Scopus citations

Abstract

The development of rigid covalent chiroptical organic materials, with multiple, readily available redox states, which exhibit high photoluminescence, is of particular importance in relation to both organic electronics and photonics. The chemically stable, thermally robust, and redox-active perylene diimide (PDI) fluorophores have received ever-increasing attention owing to their excellent fluorescence quantum yields in solution. Planar PDI derivatives, however, generally suffer from aggregation-caused emission quenching in the solid state. Herein, we report on the design and synthesis of two chiral isosceles triangles, wherein one PDI fluorophore and two pyromellitic diimide (PMDI) or naphthalene diimide (NDI) units are arranged in a rigid cyclic triangular geometry. The optical, electronic, and magnetic properties of the rigid isosceles triangles are fully characterized by a combination of optical spectroscopies, X-ray diffraction (XRD), cyclic voltammetry, and computational modeling techniques. Single-crystal XRD analysis shows that both isosceles triangles form discrete, nearly cofacial PDI-PDI π-dimers in the solid state. While the triangles exhibit fluorescence quantum yields of almost unity in solution, the dimers in the solid state exhibit very weak - yet at least an order of magnitude higher - excimer fluorescence yield in comparison with the almost completely quenched fluorescence of a reference PDI. The triangle containing both NDI and PDI subunits shows superior intramolecular energy transfer from the lowest excited singlet state of the NDI to that of the PDI subunit. Cyclic voltammetry suggests that both isosceles triangles exhibit multiple, easily accessible, and reversible redox states. Applications beckon in arenas related to molecular optoelectronic devices.

Original languageEnglish (US)
Pages (from-to)1290-1303
Number of pages14
JournalJournal of the American Chemical Society
Volume141
Issue number3
DOIs
StatePublished - Jan 23 2019

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Discrete Dimers of Redox-Active and Fluorescent Perylene Diimide-Based Rigid Isosceles Triangles in the Solid State'. Together they form a unique fingerprint.

Cite this